PENYEDIAAN SUMBER AIR ALTERATIF PENUNJANG IRIGASI DI KAWASAN PANTURA¹

Oleh:

Dr. Ir. Dede Rohmat, M.T.

Letktor Kepala pada Jurusan Pendidikan Geografi FPIPS UPI Jln. Dr. Setyabudhi No 229 Bandung 40154 Tlp. 0811210716/08156415481; email: rohmat_dede@yahoo.com

Abstrak

Sebagai produsen padi utama untuk Provinsi Jawa Barat, Daerah Pantura layaknya mempunyai ketersediaan sumber daya air yang memadai. Namun data dan fakta menunjukkan bahwa pada musim kemarau kawasan ini sering terjadi kekurangan air. Dalam kaitan ini, terdapat tantangan yang besar, yaitu "Bagaimana menjamin kesinambungan ketersediaan air, terutama untuk musim kemarau".

Tujuan kajian ini adalah: (1) mengidentifikasi dan menganakisis sumber-sumber air yang layak dan dapat dimanfaatkan sebagai penunjang irigasi di wilayah Pantura, dan (2) menganalisis rekayasan teknis yang dapat diimplementasikan untuk mendukung penyediaan air penunjang irigasi di wilayah Pantura.

Bentuk sumber air yang dinilai paling potensial adalah sumber air sungai/kali. Sedangkan berdasarkan pertimbangan kapasitas tampung dan kontinuitas debit, cakupan atau jangkauan areal layanan, resiko biaya, dampak lingkungan, aspirasi masyarakat, dan intergrasi dengan pengendalian banjir, maka bentuk penyediaan air yang terbaik dan potensial dikembangkan adalah Kali Malang. Terdapat 9 kali malang di Kabupaten Indramayu dan 6 di Kabupaten Cirebon yang potensial dikembangkan untuk mengatasi kekeringan pada masng-masing daerah superprioritas.

Pada tahap implementasi dan pengembangannya perlu dilakukan kajian lanjut yang bersifat lebih teknis dan lebih detail. Alangkah baik jika Dinas Teknis atau UPT teknis terkait berkenan untuk menindaklanjuti hasil kajian ini.

Dede Rohmat (2009), Penyediaan Sumber Air Alteratif Penunjang Irigasi Di Kawasan Pantura

¹ Makalah disajikan pada Talk Show dan Seminar Nasional 'Peran Informasi Geospasial Pertanahan untuk Mendukung Kedaulatan Pangan dan energi', Hotel Savoy Homann Bidakara, Bandung, 4 Maret 2009.

I. Pendahuluan

1.1 Latar Belakang

Di Indonesia, dari curah hujan 21,20 mm/tahun atau 3.034,4 milyar m³/tahun hanya 25 % (758,6 milyar m³) yang tertampung di waduk, sungai, danau, cekungan atau tampungan lain; 3 % (103,1 milyar dimanfaatkan untuk keperluan dokestik, sisanya 72 % (2.172,7 milyar m³) terbuang percuma ke laut. Kondisi yang sangat ekstrim terlihat di Pulau Jawa, dari 189 milyar m³ air hujan yang jatuh hanya 47 milyar m³ atau hanya 24,9 % yang menjadi aliran mantap, yaitu air yang tertampung dalam sungai, waduk, danau/situ, dan tampungan lain, sebagian kecil dimanfaatkan oleh kebutuhan manusia dan segala aktivitasnya, dan sebagian besar mengalir ke laut. Padahal kebutuhan untuk domestik, irigasi, dan lain-lain sekitar 60 milyar m³ per tahun. Ini artinya Pulau Jawa berada pada kondisi defisit air (Kodoatie, 2005).

Dapat diprediksi bahwa kesenjangan antara *demand* dan *supply* akan cenderung semakin membesar dari tahun ke tahun. Selain kesenjangan tersebut, di beberapa lokasi, bahaya banjir dan bahaya kekeringan pun cenderung semakin membesar dan tajam akibat menurunnya kualitas daerah tangkapan air.

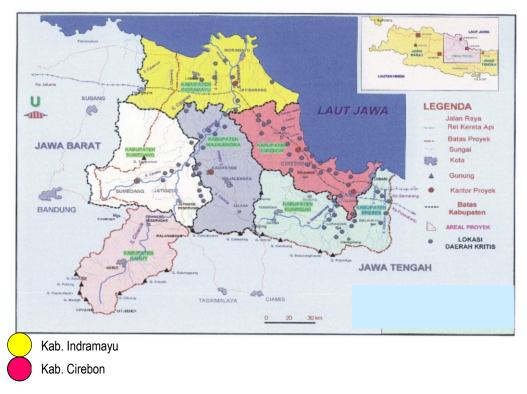
Wilayah Pantura adalah merupakan wilayah yang mempunyai areal irigasi yang luas dan merupakan salah satu wilayah penghasil padi untuk Jawa Barat. Layaknya untuk kawasan Pantura sebagai produsen padi utama untuk Provinsi Jawa Barat adalah tersedianya sumber daya air yang memadai, baik secara kualitas maupun kuantitas dalam sebaran ruang dan waktu. Namun data dan fakta menunjukkan bahwa pada musim kemarau kawasan ini sering terjadi kekurangan air. Dalam kaitan ini, terdapat tantangan yang besar, yaitu "Bagaimana menjamin kesinambungan ketersediaan air, terutama untuk musim kemarau".

Salah satu upaya untuk menjawab tantangan terseut adalah dengan meningkatkan kapasitas *supply* adalah dengan cara mengidentifikasi sumber dan teknologi penyediaan air baku untuk menunjang irigasi. Sumber-sumber air tersebut dalam berbentuk mata air, airtanah, air sungai, dan tampungan air di permukaan lahan (embung, *longstorage*, situ, dan lain-lain).

Keberadaan sumber-sumner tersebut dinilai sangat penting didalam turut menciptakan keseimbangan hidrologi / tata air permukaan, dan bermanfaat terutama untuk memenuhi kebutuhan air baku untuk memenuhi kebutuhan irigasi dan kebutuhan domestik. Fungsi lain adalah merupakan wadah untuk aktivitas perikanan dan rekreasi/pariwisata, serta konservasi air. Fungsi yang disebutkan terakhir merupakan fungsi yang selalu melekat pada sumber air yang berupa situ, embng, longstotage, dan sejenisnya. Berdasarkan kerangka pemikiran di atas, tulisan ini disajikan.

1.2 Tujuan dan Lingkup Kajian

Tujuan kajian ini adalah:


- 1) Mengidentifikasi dan menganakisis sumber-sumber air yang layak dan dapat dimanfaatkan sebagai penunjang irigasi di wilayah Pantura.
- 2) Menganalisis rekayasan teknis yang dapat diimplementasikan untuk mendukung penyediaan air penunjang irigasi di wilayah Pantura.

Lingkup kajian yang disajikan dalam tulisan ini mencakup:

- Data dan informasi primer dan sekunder terutama yang berkaitan dengan aspek Hidrologi dan lingkungan
- 2) Analisis terhadap : (1) sumber-sumber air alternative; (2) ketersediaan air; (2) akternatif rekayasa teknologi untk penyediaan air; dan (4) zonasi daerah layanan
- 3) Penyusunan rekomendasi, yangberkaitan dengan sumber air alternative dan rekayasan tenologi yang layak diimplementasikan

1.3 Lokasi Kajian

Lokasi kajian secara geografis berada pada Wilayah Sungai Cimanuk dan (DAS) Cisanggrarung, Balai Pendayagunaan Sumber Daya Air Wilayah Sungai Cimanuk-Cisanggarung, dan berdasarkan Permen PU 11A-/PRT/M/2006 terletak pada Wilayah Sungai Cimanuk-Cisanggarung dan Wilayah Sungai Citarum. Sedangkan secara administratif berada di Kabupaten Indramayu dan Kabupaten Cirebon (Gambar 1.1).

Gambar 1.1 Lokasi Kajian

II. Formulasi Permasalahan Umum

Sebagaimana digambarkan pada bagian pendahuluan, bahwa ketersediaan air di kawasan Panturan untuk pertanian sangat kurang terutama untuk penyediaan air pada musim kemarau. Fakta dan data lapangan menunjukkan bahwa puluhan hingga ratusan hektar lahan sawah dalam satu kawasan desa mengalami kekeringan dengan intensitas ringan, sedang, berat hingga puso.

Berbagai upaya telah dan sedang dilakukan oleh petani secara lokal, mulai dari upaya yang sifatnya personal hingga kelembagaan. Upaya-upya tersebut mencerminkan kemandirian petani dalam rangka pemenuhan kebutuhan air untuk pertanian sebatas kemampuan mereka. Namun demikian, upaya besar yang sifatnya padat teknologi dan padat biaya, tentu memerlukan bantuan dari luar.

Secara umum permasalahan yang terungkap di lapangan (kawasan Pantura), khususnya untuk Kabupaten Indramayu dan Kabupaten Cirebon dapat diformulasikan menjadi beberapa ítem, sebagai berikut:

- (1) Dalam skala luas, menyebar dan merata kekeringan terjadi di hampir seluruh kecamatan di Kabupaten Indrmayu dan Kabupaten Cirebon. Kekeringan menyebabkan kerusakan lahan dan komoditi pertanian, dengan intensitas yang bervariasi, mulai dari rusak ringan, sedang, berat hingga puso.
- (2) Faktor utama kekeringan, selain faktor iklim (musim) adalah terbatasnya pasokan air dari saluran irigasi, walaupun sebagain besar atau seluruh kawasan kajian merupakan kawasan irigasi teknis.
- (3) Faktor lain adalah, tidak-adanya atau terbatasnya tampungan air dalam bentuk embung, longstorage, situ dan sebagainya di kawasan Pantura yang dekat dengan kawasan yang kekeringan.
- (4) Saluran alami dan sebagai saluran pembuang debitnya sangat kecil pada musim kemarau. Pemanfaatan air pada sumber air ini telah dilakukan oleh petani dengan teknologi, upaya dan biaya mandiri dari petani
- (5) Masalah manajemen pengelolaan/pembagian dan kedisiplinan petani dalam pengambilan dan pergiliran pembagian air dijumpai pada wilayah-wilayah yang masih memperoleh pasokan air, walalupun dalam kuantitas yang terbatas.
- (6) Pada daerah yang sudah memilki wadah air (embung, longstorage, dll), ketidakkontinyuan suplai air dan kapasitas tampungan wadah merupakan masalah tersendiri dalam rangka penyediaan air yang memadai bagi lahan pertanian di wilayah sekitarnya.

Item-item permasalahan inilah yang merupakan tantangan bagi semua pihak, baik masyarakat dan pemerintah serta berbagai pihak terkait untuk terus berupaya mengatasinya. Potensi dan partisipasi masyarakat yang sudah ditunjukan saat ini merupakan modal dasar.

2.1 Wilayah dan Intensitas Kekeringan Di Pantura

2.1.1 Kabupaten Indramayu

Di Kabupaten Indramayu, luas total areal pertanian yang kekeringan mencapai 42.745 Ha, dengan intensitas kekeringan bervariasi, mulai dari ringan (4.944 Ha), sedang (4.665 Ha), berat (4.526 Ha) dan Puso (28.610 Ha) (Dinas Pertanian dan Peternakan Kabupaten Indramayu 2008), Dari 31 kecamatan, nampaknya hanya 4 kecamatan yang tidak terjad kekeringan (Tabel 1).

Tabel 1 Luas areal kekeringan di Kabupaten Indramayu Tahun 2008

NO	KECAMATAN	RINGAN	SEDANG	BERAT	PUSO	JUMLAH	TERANCAM
NO	RECAMATAN	HA	HA	HA	HA	HA	HA
1	Haurgeulis	246	206	171	49	672	
2	Gantar	437	361	428	571	1797	
3	Kroya	1133	1281	1230	1206	4850	
4	Gabus Wetan	-	-	-	1400	1400	
5	Cikedung	408	40	-	2686	3134	
6	Terisi	-	12	418	1894	2324	
7	Lelea	201	209	20	1713	2143	
8	Bangodua	94	67	-	-	161	
9	Widasari	280	183	150	282	895	
10	Kertasmaya	165	116	18	123	422	
11	Sukagumiwang	638	468	183	149	1438	
12	Krangkeng	-	-	-	1510	1510	
13	Karang Ampel	-	-	-	1679	1679	
14	Kedokan Bunder	-	-	-	966	966	
15	Juntinyuat	314	1027	589	813	2743	
16	Sliyeg	493	429	66	2228	3216	
17	Jatibarang	232	-	-	180	412	
18	Balongan	-	-	-	1670	1670	
19	Indramayu	-	4	75	554	633	
20	Sindang	-	131	112	553	796	34
21	Cantigi	-	-	-	397	397	
22	Loh Bener	-	-	374	1002	1376	
23	Arahan	-	-	-	1241	1241	
24	Losarang	-	-	417	3078	3495	
25	Sukra	-	-	-	-	-	
26	Kandanghaur	125	131	275	2492	3023	
27	Bongas	-	-	-	-	-	
28	Anjatan	-	-	-	-	-	
29	Tukdana	-	-	-	-	-	
30	Pasekan	38	-	-	174	212	
31	Patrol	140	-	-	-	140	
	Jumlah	4944	4665	4526	28610	42745	34

Sumber: Dinas Pertanian dan Peternakan Kab. Indramayu, 2008.

2.1.2 Kabupaten Cirebon

Dinas Pertanian dan Peternakan Kebupaten Cirebon merekap dan menginformasikan sejumlah lahan pertanian yang mengalami kekeringan yang dirinci berdasarkan lokasi (kecamatan), luas dan intensitas kerusakan. Berdasarkan data tersebut diketahui bahwa di Kabupaten Cirebon terdapat sekitar 13.843 Ha lahan pertanian yang

mengalami kekeringan, dengan rincian mengalami kerusakan ringan 2.244 Ha, kerusakan sedang 2.381 Ha, berat 2.984 Ha, dan puso 5.874 Ha. Lokasi kekeringan ini tersebar di 33 kecamatan dari 40 buah kecamatan di Kabupaten Cirebon. Kecamatan yang tidak mengalami kekeringan, adalah kecamatan Ciledug, Pabuaran, Mundu, Dukupuntang, Plumbon, Depok, dan Ciwaringin. Sebaran lokasi kekeringan dapat dilihat pada Tabel 2.

Tabel 2 Luas areal kekeringan di Kabupaten Cirebon Tahun 2008

NO I KECAMATAN		BERAT	PUSO	JUMLAH	TERANCAM		
NO	KECAMATAN	HA	HA	HA	HA	HA	HA
1	Waled	177	53	22	14	266	-
2	Pasaleman	5	-	-	-	5	-
3	Ciledug	-	-	-	-	-	-
4	Pabuaran	-	-	-	-	-	-
5	Losari	78	49	35	-	162	192
6	Pabedilan	-	100	-	-	100	-
7	Babakan	-	33	93	31	157	-
8	Gebang	25	30	40	82	177	-
9	Karang Sembung	95	186	-	-	281	-
10	Karang Wareng	143	135	-	-	278	-
11	Lemahabang	34	41	49	23	147	-
12	Susukan Lebak	56	43	49	23	171	-
13	Sedong	-	85	-	-	85	-
14	Astanajapura	-	-	-	35	35	-
15	Pangenan	45	40	28	90	203	-
16	Mundu	-	-	-	-	-	174
17	Beber	11	24	55	25	115	-
18	Greged	20	-	20	-	40	-
19	Talun	53	14	-	10	77	3
20	Kedawung	12	-	-	25	37	-
21	Sumber	-	-	9	11	20	58
22	Dukupuntang	-	-	-	-	-	-
23	Palimanan	13	-	-	-	13	-
24	Plumbon	-	-	-	-	_	-
25	Depok	-	-	-	-	_	-
26	Weru	3	39	32	39	113	-
27	Plered	65	93	81	133	372	65
28	Tengahtani	20	-	20	78	118	_
29	Gunungjati	-	-	4	193	197	16
30	Kapetakan	-	-	92	922	1014	-
31	Klangenan	-	-	433	-	433	_
32	Jamblang	107	61	-	-	168	_
33	Arjawinangun	174	168	220	107	669	_
34	Panguragan	69	110	255	385	819	_
35	Ciwaringin	-	-		-	-	_
36	Susukan	176	113	413	320	1022	_
37	Gempol	7	1	-	-	8	_
38	Gegesik	765	630	852	1811	4058	275
39	Suranenggala	-	21	18	681	720	
40	Kalawedi	91	312	164	836	1403	_
	Jumlah	2244	2381	2984	5874	13483	783
Sumbe	er : Dinas Pertanian,					.0.03	

Sumber : Dinas Pertanian, Perkebunan dan Peternakan Kab. Cirebon

2.1.3 Lokasi Prioritas

A. Pertimbangan dan Parameter

Terdapat dua parameter yang digunakan untuk menentukan prioritas lokasi penentuan daerah layanan untuk penyediaan sumber air penunjang irigasi. Parameter pertama adalah intensitas atau tingkat kerusakan lahan pertanian yang diurut dari tingkat terparah hingga tidak parah, ayitu puso, rusak berat, rusak sedang, dan rusak ringan. Parameter kedua adalah luas lahan yang mengalami kerusakan terparah.

Berdasarkan pertimbangan tersebut, dalam kajian ini diusulkan beberapa lokasi prioritas. Jika lokasi prioritas telah ditetapkan, maka akan lebih mudah mencari, mengidentifikasi dan menginventarisasi sumber-sumber air penunjang irigasi. Langkah berikutnya adalah menghitung dan menentukan bentuk, dan teknologi penyediaan yang mudah dan murah.

B. Alternatif Lokasi Prioritas

Lokasi prioritas ditentukan menurut Kabupaten, dalan hal ini masing-masing kabupaten akan ditetapkan sekitar 10 kecamatan yang mempunyai tingkat kerusakan puso yang paling luas.

Di Kabupaten Indramayu terdapat 25 kecamatan yang mengalami kerusakan puso akibat kekeringan. Dari 25 kecamatan tersebut ditentukan sebanyak 10 kecamatan prioritas, yaitu Kecamatan Losarang, Cikedung, Kandanghaur, Sliyeg, Kroya, Lelea, Karangampel, Balongan, Krangkeng, dan Gabus Wetan atau ditambah dengan Kecamatan Arahan.

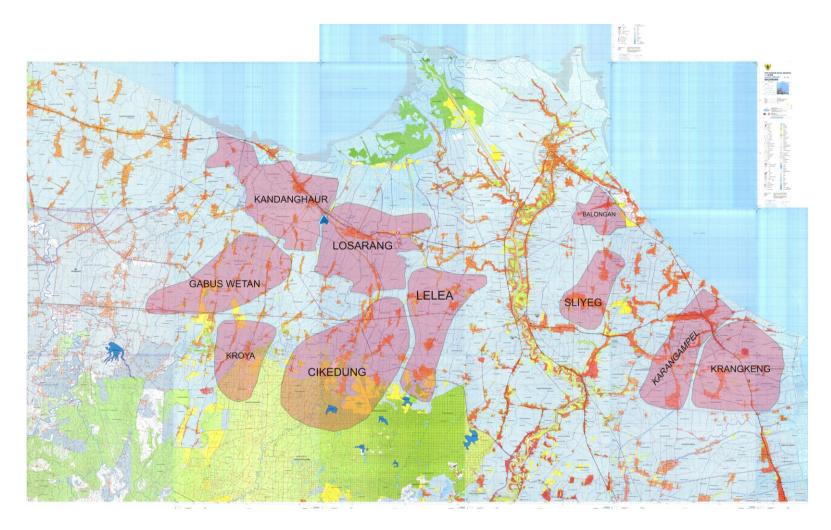
Dari 10 kecamatan ini dapat diperas lagi menjadi lokasi-lokasi (kecamatan) super prioritas, sebagai berikut yaitu (Gambar 1):

- (1) Kecamatan Losarang (puso, 3.078 Ha)
- (2) Kecamatan Cikedung (puso, 2.686 Ha)
- (3) Kecamatan Kandanghaur (2.492 Ha)
- (4) Kecamatan Sliyeg (2.228 Ha)

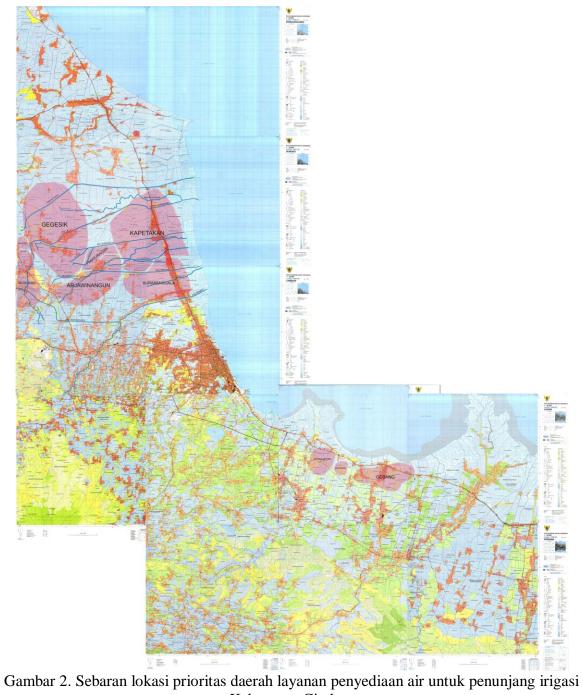
(5) Kecamatan Kroya (1.206 Ha)

Di Kabupaten Cirebon, terdapat 22 kecamatan yang sebagaian lahan pertaniannya mengalami puso. Dari 22 kecamatan ini, lahan pertanaian yang mengalami puso tercatat 5.874 Ha. Luas ini tentu saja jauh lebih kecil dibandingkan lahan yang mengalami puso di Kabupaten Indramayu.

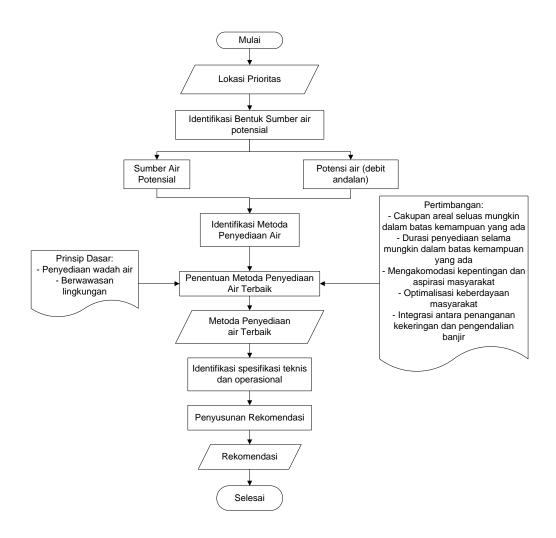
Berdasarkan data puso dan pertimbangan daerah prioritas pengembangan (Berdasarkan pertimbangan dari Dinas Pertanian, Perkebunan dan Peternakan Kab. Cirebon) dapat ditetapkan 10 kecamatan prirotas, yaitu Gegesik, Kapetakan, Kalawedi, Suranenggala, panguragan, Susukan, Arjawinangun, Gunungjati, Gebang, dan Astanajapura. Sedangkan lima lokasi superprioritas terdriri atas (Gambar 2):


- (1) Kecamatan Gegesik (1.811 Ha)
- (2) Kecamatan Kapetakan(922 Ha)
- (3) Kecamatan Kalawedi (836 Ha)
- (4) Kecamatan Suranenggala (681 Ha)
- (5) Kecamatan panguragan (385 Ha)

III. Pendekatan dan Prosedur Penyediaan Air Penunjang Irigasi


Terdapat tiga kajian dalam upaya penyediaan air penunjang irigasi di Pantura. Tiga kajian tersebut yaitu :

- (1) Sumber air potensial, yang mencakup jenis sumber air, potensi air (debit andalan) dan cakupan lokasi serta cakupan areal sasaran
- (2) Metoda penyediaan air, yang mencakup identifikasi jenis metoda penyediaan, prinsip dasar dan pertimbangan teknis, serta penentuan metode terbaik
- (3) Teknis dan operasional penyediaan air menurut metoda terbaik dan penyusunan rekomendasi.


Secara skematik keterkaitan tig akajian tersebut, disajikan pada Gambar 3.

Gambar 1. Sebaran lokasi prioritas daerah layanan penyediaan air untuk penunjang irigasi Kabupaten Indramayu

Kabupaten Cirebon

Gambar 3. Alur proses analisis penyediaan air penunjang irigasi di Pantura

3.1 Sumber Air Potensial

Terdapat berbagai bentuk sumber air potensial untuk penunjang irigasi kawasan pantura, antara lain situ, sungai/kali, saluran irigasi dan saluran pembuang. Sumber air situ dinilai kurang potensial karena berbagai alasan antara lain letak yang jauh, penyediaan air bersifat local, secara teknis memerlukan penyaluran yang panjang untk sampai pada beberapa areal layanan, dan umumnya tampungan mengandalkan run off atau base flow yang terbatas ketika waktu kemarau. Pengaliran air situ pada musim kemarau sangat tidak menguntungkan bagi keberlangsungan habitat situ.

Sedangkan sumber air dari saluran pembuang mempunyai resiko penurunan debit disaat musim kemarau seiring dengan berkurangnya air irigasi teknis. Disamping itu letak saluran pembuang yang lebih ke hilir dan elevasi yang lebih rendah menjadi kendala tersendiri.

Di antara bentuk-bentuk sumber air, yang dinilai paling potensial adalah sumber air sungai/kali. Pertimbangannya, walalupun debit air pada musim kemarau kecil dan hanya mengandalkan *base flow*, namun pada musim hujan air cukup melimpah. Dengan rekaya teknis tertentu sumber air yang melimpah pada musim hujan dapat dimanfaatkan untuk memenuhi kekebutuhan air pada musim kemarau. Dalam batas-batas potensi yang ada, rekayasa yang dimaksud adalah rekayasa yang mampu menyediakan air dalam skala areal yang lebih luas dan dalam jangka waktu yang lebih lama, sehingga kerusakan tanaman akibat kekeringan dapat ditekan kearah yang lebih kecil.

3.1.1 Kabupaten Indramayu

Lima lokasi superprioritas penyediaan air penunjang irigasi di Kabupaten Indramayu mencakup Kecamatan : Losarang (puso, 3.078 Ha), Cikedung (puso, 2.686 Ha), Kandanghaur (2.492 Ha), Sliyeg (2.228 Ha), dan Kroya (1.206 Ha).

Sumber air potensial yang dapat dioptimalkan untuk wilayah tersebut antara lain: Kali Kumpul Kuista, Kali Sukareja, Kali Kamal, Kali Prawirokepolo, Kali Gebang Sawit, Kali Cilengkrang, Kali Citempel, Kali Asin, Kali Cipanas, Kali Perak, Kali Tua, Cibubul, Ciluncat, Cipondoh, Cibenuang, Cilalanang, Cipedang, Cicongger, Pasir Angin, Kali Buaya, Kali Pangkalan, Kali Betokan, Kali Pangedengan, Kali Perawan dan Kali Menir (Tabel 3).

3.1.2 Kabupaten Cirebon

Lima lokasi superprioritas penyediaan air penunjang irigasi di Kabupaten Cirebon Mencakup Kecamatan : Gegesik (1.811 Ha), Kapetakan, (922 Ha), Kalawedi (836 Ha), Suranenggala (681 Ha), dan Panguragan (385 Ha). Sumber air potensial yang dapat dioptimalkan untuk wilayah super prioritas antara lain: Sungai Bangka Deres, Kali Ender,

Sungai Dulang Jero, Kali Tersana, Kali Gabus, Kali Kumpul Kwista, Kali Ciwaringin, Kali Sigranala, Kali Winong, dan Kali Bondet (Tabel 4).

Tabel 3. Sumber air potensial untuk daerah prioritas Kab. Indramayu

No	Sumber Air Potensial	Luas DAS Tinjau
		(km2)
1.	Kali Kumpul Kuista	80.904
	Kali Sukareja	46.838
2.	K. Sukareja (tengah)	34.916
	K. Kamal	28.103
3	K. Kumpulkuista (atas)	51.097
	K. Sukareja (atas)	27.252
4	K. Prawirokepolo (atas)	16.181
	K. Prawirokepolo dua (atas)	10.219
5	K. Prawirokepolo (tengah)	22.142
	K. Gebangsawit (atas)	10.645
6	K. Gebangsawit (bawah)	21.290
	K. Prawirokepolo (bawah)	28.955
7	K.Cilengkrang (atas)	20.439
	K. Citempel	13.626
8	K.Cilengkrang (bawah)	33.213
	K. Asin	22.994
9	K. Cipanas, K. Perak, K.Tua.	153.291
	Cibubul	15.755

Tabel 4. Sumber air potensial untuk daerah prioritas Kab. Cirebon

No	Sumber Air Potensial	Luas DAS (km2)
1	K. Bangka Deres	110.710
	K. Ender	118.375
2	K. Tersana	20.210
	K. Gabus	21.519
3	K. Kumpul Kuista	199.279
	K. Ciwaringin	172.879
	K. Sigranalla	47.691
	K. Winong (atas)	29.807
4	K. Winong (bawah)	40.026
	K. Bondet (bawah)	160.956
5	K. Kumpulkuista (tengah)	184.375
	K. Ciwaringin (tengah)	153.291
6	K. Kumpulkuista (atas)	168.194
	K. Bondet (atas)	64.723

IV. Metoda Penyediaan Air

4.1 Identifikasi Bentuk-bentuk Penyediaan Air

Terdapat berbagai bentuk penyediaan air yang dapat dikembangkan di lokasi kajian. Bentuk penyediaan air tersebut antara lain:

- 1) Embung, situ atau kolam penampungan yang dibuat di atas lahan. Wadah ini berguna menyimpan air yang selanjutnya disalurkan/diambil kembali untuk pengairan.
- 2) Simpanan air di sepanjang saluran (long storage). Biasanya air dibendung pada level tertentu dan badan sungai ditata sedemikian sehingga badan sungai mempunyai bentuk dan kapasitas tampung yang memadai untuk digunakan sebagai wadah penyediaan air.
- 3) Tampungan melintang beberapa sungai/kali (Kali malang). Terdapat beberapa keuntungan bentuk ini, antara lain:
 - Sumber air tidak hanya dari satu sungai, namun dari beberapa sungai yang dilintangi oleh saluran ini (kali Malang).
 - Resiko bahaya ketika banjir dapat dikendalikan dengan membuat pintu-pintu pengendali pada setiap pertemuan dengan sungai
 - Debit aliran untuk pemeliharaan sungai dapat dipertahankan dengan cara memasang ambang di atas elevasi debit minimum sungai yang bersangkutan (sungai yang terlintangi oleh kali malang)
 - Kali malang dapat dirancang melintasi beberapa daerah layanan yang potensial dikembangkan. Dengan demikian kali malang mempunyai daya jangkau areal layanan yang lebih luas dan lebih dalam tidak hanya untuk areal di sekitar saluran.
 - Pembuatan kali malang bisa lebih dari satu, tergantung kebutuhan

4.2 Prinsip dan Pertimbangan Penentuan Bentuk Penyediaan Air Terbaik

Terdapat dua prinsip dasar yang harus dipenuhi dalam menentukan metoda penyediaan air penunjang irigasi terbaik. Prinsip dasar tersebut adalah bahwa:

Penyediaan Wadah

Penyediaan hanya bersifat menyediakan wadah penampungan air yang dapat dimanfaatkan oleh penduduk pada musim kemarau. Penyediaan air tidak mencakup penyediaan saluran atau perangkat penyediaan dan pengaliran air lainnya.

• Berwawasan Lingkungan

Penyediaan air harus berwawasan lingkungan, tidak berdampak negative terhadap kondisi lingkungan sekitar, fungsi dan peran penyediaan air bersifat berkelanjutan. Aspirasi, keberadaan dan keberdayaan masyarakat harus terakomodasi dalam rencana penyediaan air penunjang irigasi.

Penentuan bentuk Penyediaan air terbaik harus mempertimbangkan:

- 1. Cakupan areal seluas mungkin dalam batas kemampuan yang ada
- 2. Durasi penyediaan selama mungkin dalam batas kemampuan yang ada.
- 3. Mengakomodasi kepentingan dan aspirasi masyarakat
- 4. Optimalisasi keberdayaan masyarakat
- 5. Integrasi antara penanganan kekeringan dan pengendalian banjir

4.3 Penentuan Bentuk penyediaan air penunjang irigasi terbaik

Penentuan bentuk penyediaan air penunjang irigasi ditentukan berdasarkan parameter :

- 1) Potensi air dalam bentuk potensi rekaysa kapasitas tampung dan kontinuitas debit
- 2) Cakupan atau jangkauan areal layanan
- 3) Resiko biaya
- 4) Dampak Lingkungan
- 5) Aspirasi masyarakat
- 6) Intergrasi dengan pengendalian banjir

Hasilnya menunjukkan bahwa penyediaan air dalam bentuk Pembuatan Saluran Melintang Beberapa Sungai (Kali Malang) cukup potensial untuk dikembangkan (Tabel 5).

4.4 Spesifikasi Teknis dan Operasional Kali Malang

Pembuatan Kali malang, dapat dilakukan hanya jika dengan persyaratan teknis-ekologis berikut ini dipenuhi, yaitu :

- (1) Saluran kali malang, dapat melintang (bertemu) dengan lebih dari satu sungai.
- (2) Koneksii antara kali malang dengan saluran/kali/sungai lain dapat dilakukan untuk menyadap air saluran/kali/sungai tersebut dengan mempertimbangkan bahwa debit pengaliran untuk pemeliraan sungai/kali/salurab tersebut tetap terjaga
- (3) Setiap titik koneksi harus dilengkapi dengan pintu air dengan ambang elevasi dasar pintu harus lebih tinggi dari elevasi debit rata-rata minimum saluran/kali/sungai yang bersangkutan.
- (4) Jika tidak dilakukan koneksi dengan sungai/saluran/kali yang terlintasi maka siphon sangat dianjurkan untuk dibuat. Hal ini untuk menjaga agar satu system ruas kali malang tetap dapat dipertahankan, kecuali jika kali malang sudah berbeda system (beda ruas).
- (5) Kedalaman kali malang, harus lebih rendah dari dasar sungai yang terlintasi. Hal ini untuk menjaga agar base flow dapat tertampung di dalam kali malang
- (6) Satu ruas kali malang harus mempunyai elevasi yang sama, agar tercapai keseimbangan elevasi storage air.

Dengan memperhatikan syarat-syarat teknis-ekologis tersebut, berikut ini disajikan spesifikasi teknis masing-masing ruang kali malang yang dapat dikembangkan di Kabupaten Indramayu dan Kabupaten Cirebon (lihat Tabel 6) sedangkan debit andalan untuk masing-masing kabupaten di sajikan pada Tabel 7 dan Tabel 8.

V. Kesimpulan dan Rekomendasi

5.1 Kesimpulan

Berdasarkan uraian di atas, dapat dikemukakan beberapa kesimpulan berikut:

1) Bentuk sumber air yang dinilai paling potensial adalah sumber air sungai/kali, walalupun debit air pada musim kemarau kecil namun pada musim hujan air cukup Dede Rohmat (2009), Penyediaan Sumber Air Alteratif Penunjang Irigasi Di Kawasan Pantura

melimpah. Air yang melimpah pada musim hujan dapat dimanfaatkan untuk memenuhi kekebutuhan air pada musim kemarau. Sumber air potensial untuk Kabupaten Indramayu antara lain Kali Kumpul Kuista, Kali Sukareja, Kali Kamal, Kali Prawirokepolo, Kali Gebang Sawit, Kali Cilengkrang, Kali Citempel, Kali Asin, Kali Cipanas, Kali Perak, Kali Tua, Cibubul, Ciluncat, Cipondoh, Cibenuang, Cilalanang, Cipedang, Cicongger, Pasir Angin, Kali Buaya, Kali Pangkalan, Kali Betokan, Kali Pangedengan, Kali Perawan dan Kali Menir. Sedangkan sumber air potensial untuk Kabupaten Cirebon antara lain adalah: Sungai Bangka Deres, Kali Ender, Sungai Dulang Jero, Kali Tersana, Kali Gabus, Kali Kumpul Kwista, Kali Ciwaringin, Kali Sigranala, Kali Winong, dan Kali Bondet.

2) Berdasarkan pertimbangan kapasitas tampung dan kontinuitas debit, cakupan atau jangkauan areal layanan, resiko biaya, dampak Lingkungan, aspirasi masyarakat, dan intergrasi dengan pengendalian banjir, maka bentuk penyediaan air yang terbaik dan potensial dikembangkan adalah saluran yang melintangi lebih dari satu sungai atau disebut dengan istilah Kali Malang. Setidaknya terdapat 9 kali malang di Kabupaten Indramayu dan 6 di Kabupaten Cirebon yang potensial dikembangkan untuk mengatasi kekeringan pada masng-masing daerah superprioritas.

5.2 Rekomendasi

Tulisan merupakan hasil kajian awal, untuk tahap implementasi dan pengembangannya perlu dilakukan kajian lanjut yang bersifat lebih teknis dan lebih detail. Alangkah baik jika Dinas Teknis atau UPT teknis terkait berkenan untuk menindaklanjuti hasil kajian ini.

Tabel 5. Matriks penentuan bentuk penyediaan air terbaik untuk penyediaan air penunjang irigasi

Bentuk	Potensi	air	Cakupan/jankauan	Resiko	Lingkungan	Aspirasi	Integrasi	Total
Penyediaan air	Rekayasa kapasitas tampung	Konstinuitas	areal	bahaya		Masyarakat	dengan pengendalian banjir	Score
Embung/situ/kolam tampungan	Baik	Sumber air terbatas pada musim kemarau, embung/ situ/kolam penampungan akan kering	Terbatas, Tidak terlalu luas, bersifat setempat	Potensial kecil, karena letak tampungan tidak di alur/palung sungai	Cukup beresiko, debit untuk pemeliharaan sungai, terbatas	Baik	Cukup potensial	
Score	10	5	5	10	8	10	8	56
Long storage	Terbatas Sumber air terbatas, Tidak terbatas pada musim kemarau long storage akan kering Terbatas, Tidak terlalu luas, bersifat setempat		Potensial besar, karena letak tampungan berada di alur/ palung sungai	Beresiko, debit untuk pemeliharaan sungai, mungkin minimum	Baik	Cukup Potensial		
Score	5	5	5	5	5	10	8	43
Kali Malang (Tampungan Melintang beberapa Sungai)	Baik	Sumber air terbatas pada musim kemarau sumber air akan kering, namun base flow dapat ditampung dan optimalisasi penyimpanan air pada musim hujan akan sangat membantu	Cakupan luas menjangkau daerah yang jauh dari saluran	Potensial kecil, karena letak tampungan tidak di alur/palung sungai	Tidak beresiko, debit untuk pemeliharaan sungai, dapat dipertahankan	Baik	Potensial	
Score	10	8	10	10	10	10	10	68

Tabel 6.

REKAPITULASI SPESIFIKASI TEKNIS PENYEDIAAN AIR

				LUAS		LUAS AREAL	DIMENSI KALI MALANG				
NO	NAMA	ELEVASI	SUMBER AIR	CATCHMENT (Km) ²	DAERAH LAYANAN	LUAS AREAL LAYANAN (Ha)	PANJANG (Km)	LEBAR (m)	KEDALAMA N (m)	VOLUME TAMPUNGAN (m³)	KET
	<u>INDRAMAYU</u>										
1	Kali Malang Krangkeng	+ 2	K. Dampiangkuista K. Dendeng / K. Sukareja	80.904 46.838	Kec. Krangkeng	1,510	4.451	22.5	2.5	250,368.75	
2	Kali Malang Karang Ampel (bawah)	+ 3	K. Sukareja (tengah) K. Kamal	34.916 28.103	Kec. Karang Ampel	979	5.32	22.5	2.5	299,250.00	
3	Kali Malang Karang Ampel (atas)	+ 3	K. Kumpulkuista (atas) K. Sukareja (atas)	51.097 27.252	Kec. Karang Ampel	700	8.034	22.5	2.5	451,912.50	
4	Kali Malang Sliyeg (atas)	+ 8	K. Prawirokepolo (atas) K. Prawirokepolo dua (atas)	16.181 10.219	Kec. Sliyeg	1,028	4.777	22.5	2.5	268,706.25	
5	Kali Malang Sliyeg (bawah)	+ 3	K. Prawirokepolo (tengah) K. Gebangsawit (atas)	22.142 10.645	Kec. Sliyeg	1,200	5.32	22.5	2.5	299,250.00	
6	Kali Malang Balongan	+ 1	K. Gebangsawit (bawah) K. Prawirokepolo (bawah)	21.290 28.955	Kec. Balongan	1,670	6.405	22.5	2.5	360,281.25	
7	Kali Malang Lelea (atas)	+ 12	K.Cilengkrang (atas) K. Citempel	20.439 13.626	Kec. Lelea	803	6.078	22.5	2.5	341,887.50	
8	Kali Malang Lelea (bawah)	+ 4	K.Cilengkrang (bawah) K. Asin	33.213 22.994	Kec. Lelea	910	5.646	22.5	2.5	317,587.50	
9	Kali Malang Cikedung	+ 11	K. Cipanas K. Perak K. Tua		Kec.Cikedung	2,686	7.6	22.5	2.5	427,500.00	
	CIREBON		Cibubul	15.755							
1	Kali Malang Astanajapura Pangenan	+ 9	K. Bangka Deres K. Ender		Kec. Astanajapura Kec. Pangenan	35 90 125	5.420	22.5	2.5	304,875.00	
2	Kali Malang Gebang	+ 4	K. Tersana K. Gabus	20.210 21.519	Kec. Gebang	82	6.247	22.5	2.5	351,393.75	
3	Kali Malang Kapetakan, Panguragan Arjawinangun	+ 4	K. Kumpul Kuista K. Ciwaringin K. Sigranalla K. Winong (atas)	199.279 172.879 47.691 29.807	Kec. Kapetakan Kec. Panguragan Kec. Arjawinangun	922 385 57 1,364	9.654	22.5	2.5	543,037.50	
4	Kali Malang Suranenggala	+ 3	K. Winong (bawah) K. Bondet (bawah)	40.026 160.956	Kec. Suranenggala	681	5.300	22.5	2.5	298,125.00	
5	Kali Malang Gegesik	+ 3	K. Kumpulkuista (tengah) K. Ciwaringin (tengah)	184.375 153.291	Kec. Gegesik	1,211	4.638	22.5	2.5	260,887.50	
6	Kali Malang Gegesik, Susukan Arjawinangun	+ 8	K. Kumpulkuista (atas) K. Bondet (atas)		Kec. Gegesik Kec. Susukan Kec. Arjawinangun	600 320 50 970	6.72	22.5	2.5	378,000.00	

Tabel 7. Debit Andalan untuk Kabupaten Indramayu

														KAE	3. INDRA	MAYU
	NΑ	MA	LUAS						BUL	AN						
NO	TAMPUNGAN	SUNGAL	CATCH.	JAN	PEB	MAR	APR	MEI	JUN	JUL	AGT	SEP	OKT	NOP	DES	KET
	TAMPUNGAN	SUNGAI	(Km²)						(m ³ /	det)						
1	Kali Malang Krangkeng	K. Dampiangkuista	80.904	2.165	3.709	2.018	1.967	1.075	0.666	0.387	0.232	0.144	0.086	0.130	1.609	
		K. Dendeng / K. Sukareja (bawah)	46.838	1.253	2.148	1.168	1.139	0.622	0.386	0.224	0.134	0.083	0.050	0.075	0.931	
2	Kali Malang Karang Ampel (bawah)	K. Sukareja (tengah)	34.916	0.934	1.601	0.871	0.849	0.464	0.288	0.167	0.100	0.062	0.037	0.056	0.694	
_	real malang realing ramps (barran)	K. Kamal	28.103	0.752	1.289	0.701	0.683	0.373	0.231	0.134	0.081	0.050	0.030	0.045	0.559	
3	Kali Malang Karang Ampel (atas)	K. Kumpulkuista (atas)	51.097	1.367	2.343	1.275	1.242	0.679	0.421	0.244	0.147	0.091	0.054	0.082	1.016	
		K. Sukareja (atas)	27.252	0.729	1.250	0.680	0.662	0.362	0.224	0.130	0.078	0.048	0.029	0.044	0.542	
4	Kali Malang Sliyeg (atas)	K. Prawirokepolo (atas)	16.181	0.433	0.742	0.404	0.393	0.215	0.133	0.077	0.046	0.029	0.017	0.026	0.322	
	, , , ,	K. Prawirokepolo dua (atas)	10.219	0.273	0.469	0.255	0.248	0.136	0.084	0.049	0.029	0.018	0.011	0.016	0.203	
5	Kali Malang Sliyeg (bawah)	K. Prawirokepolo (tengah)	22.142	0.592	1.015	0.552	0.538	0.294	0.182	0.106	0.064	0.039	0.023	0.036	0.440	
- 5	Rail Walang Silyeg (bawan)	K. Gebangsawit (atas)	10.645	0.332	0.488	0.352	0.550	0.234	0.102	0.100	0.004	0.039	0.023	0.036	0.440	
		N. Gebangsawit (atas)	10.043	0.203	0.400	0.200	0.233	0.141	0.000	0.031	0.031	0.013	0.011	0.017	0.212	
6	Kali Malang Balongan	K. Gebangsawit (bawah)	21.29	0.570	0.976	0.531	0.518	0.283	0.175	0.102	0.061	0.038	0.023	0.034	0.423	
		K. Prawirokepolo (bawah)	28.955	0.775	1.328	0.722	0.704	0.385	0.238	0.138	0.083	0.052	0.031	0.047	0.576	
7	Kali Malang Lelea (atas)	K.Cilengkrang (atas)	20,439	0.547	0.937	0.510	0.497	0.272	0.168	0.098	0.059	0.036	0.022	0.033	0.406	
	Transfer (and)	K. Citempel	13.626	0.365	0.625	0.340	0.331	0.181	0.112	0.065	0.039	0.024	0.014	0.022	0.271	
	K EM L L L A L L	14.07	22.042	0.000	4.500	0.000	0.007	0.444	0.074	0.450	0.005	0.050	0.005	0.050	0.000	
8	Kali Malang Lelea (bawah)	K.Cilengkrang (bawah)	33.213	0.889	1.523	0.828	0.807	0.441	0.274	0.159	0.095	0.059	0.035	0.053	0.660	
		K. Asin	22.994	0.615	1.054	0.574	0.559	0.305	0.189	0.110	0.066	0.041	0.024	0.037	0.457	
9	Kali Malang Cikedung	K. Cipanas	153.291	4.101	7.028	3.824	3.726	2.036	1.263	0.733	0.440	0.273	0.162	0.246	3.048	
		K. Perak														
		K. Tua														
		Cibubul	15.755	0.422	0.722	0.393	0.383	0.209	0.130	0.075	0.045	0.028	0.017	0.025	0.313	
																,

Tabel 8. Debit Andalan untuk Kabupaten Cirebon

															KAB. CI	IREBON
	N A M A		LUAS						BUI	_ A N						
NO	TAMPUNGAN	SUNGAL	CATCH.	JAN	PEB	MAR	APR	MEI	JUN	JUL	AGT	SEP	OKT	NOP	DES	KET
	TAMFONGAN	JUNGAI	(Km²)						(m ³ /	det)						
1	Kali Malang Astanajapura, Pangenan	K. Bangka Deres	110.71	2.962	5.076	2.762	2.691	1.471	0.912	0.529	0.318	0.197	0.117	0.178	2.201	
		K. Ender	118.375	3.167	5.428	2.953	2.878	1.573	0.975	0.566	0.340	0.211	0.125	0.190	2.354	
2	Kali Malang Gebang	K. Tersana	20.21	0.541	0.927	0.504	0.491	0.268	0.166	0.097	0.058	0.036	0.021	0.032	0.402	
		K. Gabus	21.519	0.576	0.987	0.537	0.523	0.286	0.177	0.103	0.062	0.038	0.023	0.035	0.428	
3	Kali Malang Kapetakan, Panguragan	K. Kumpulkuista	199.279	5.332	9.137	4.971	4.844	2.647	1.641	0.953	0.572	0.355	0.211	0.320	3.962	
	Arjawinangun	K. Ciwaringin	172.879	4.625	7.927	4.312	4.203	2.297	1.424	0.827	0.496	0.308	0.183	0.278	3.437	
		K. Sigranalla K. Winong (atas)	47.691 29.807	1.276 0.797	2.187 1.367	1.190 0.744	1.159 0.725	0.634 0.396	0.393 0.246	0.228 0.143	0.137 0.086	0.085 0.053	0.050 0.032	0.077 0.048	0.948 0.593	
4	Kali Malang Suranenggala	K. Winong (bawah)	40.026	1.071	1.835	0.998	0.973	0.532	0.330	0.191	0.115	0.071	0.042	0.064	0.796	
		K. Bondet (bawah)	160.956	4.306	7.380	4.015	3.913	2.138	1.326	0.770	0.462	0.286	0.170	0.259	3.200	
5	Kali Malang Gegesik	K. Kumpulkuista (tengah)	184.375	4.933	8.454	4.599	4.482	2.449	1.519	0.882	0.529	0.328	0.195	0.296	3.666	
		K. Ciwaringin (tengah)	153.291	4.101	7.028	3.824	3.726	2.036	1.263	0.733	0.440	0.273	0.162	0.246	3.048	
6	Kali Malang Gegesik, Susukan	K. Kumpulkuista (atas)	168.194	4.500	7.712	4.195	4.089	2.234	1.385	0.804	0.483	0.299	0.178	0.270	3.344	
	Arjawinangun	K. Bondet (atas)	64.723	1.732	2.968	1.614	1.573	0.860	0.533	0.310	0.186	0.115	0.069	0.104	1.287	

REFERENSI

Kodoatie Robert J., Rustam Sjarief, (2005), Pengelolaan Sumber Daya Air Terpadu, Penerbit ANDI, Yogyakarta.

Dinas Pertanian dan Peternakan Kabupaten Indramayu, 2008

Dinas Pertanian, Perkebunan, dan Peternakan Kabupaten Cirebon, 2008

Rohmat Dede, 2008, Studi Potensi Sumber Daya Air Penunjang Irigasi untuk KAwasa Pantura, Dinas PSDA Jawa Barat.