
PENDUGAAN DEBIT SUNGAI

Perhitungan Debit Sungai

Persamaan Dasar

$$Q = V.A$$

- Pehitungan Kecepatan pada saluran terbuka:
 - Rumusa Manning :

$$V = \frac{1}{n}.R^{2/3}.S^{1/2}$$

Rumus Strickler

$$V = k.R^{2/3}.S^{1/2}$$

Rumus Antoine de Chezy

R = A/O

A = Luas Penampang

O = keliling basah (meter)

C= koefisien kekasaran dinding saluran

n = koefisien kekasaran di dalam saluran bersih dan lurus

K = koefisien kekasaran saluran terbuka berbentuk trapesium\

S = Kemiringan Saluran

$$V = C\sqrt{R.S} (meter / \det ik)$$

Rumus-rumus dan besaran koesisien kekasaran

• Bazin:

$$C = \frac{87}{1 + \frac{\gamma}{\sqrt{R}}}$$

E. Ganguillet - W.R
 Kutter

$$C = \frac{23 + \frac{1}{n} + \frac{0,00155}{S}}{1 + (23 + \frac{0,00155}{S})\frac{n}{\sqrt{R}}}$$

Besarnya Koefisien Kekasaran di dalam saluran bersih dan lurus			
		n	y
Dinding Saluran	Kondisi	Kutter dan Manning	Bazin
Kayu	Papan-papan rata, dipasang rapi	0,010	0,06
	Papan-papan rata, kurang rapi/tua	0,012	
	Papan-papan kasar, dipasang rapi	0,012	0,16
	Papan-papan kasar, kurang rapi/tua	0,014	
Metal	halus	0,010	0,06
	dikeling	0,015	0,30
	sedikit kurang rata	0,020	
Pasangan batu	plesteran semen halus	0,010	0,06
	plesteran semen dan pasir	0,012	
	Beton dilapis baja	0,012	
	beton dilapis kayu	0,013	0,16
	batu bata kosongan yang baik kasar	0,015	0,30
	pasangan batu, keadaan jelek	0,020	
Batu kosongan	halus, dipasang rata	0,013	0,16
	batu bongkaran, batu pecah, batu belah, batu		
	guling, di pasang dalam semen	0,017	0,46
	kerikil halus padat	0,020	
Tanah	rata dan dalam keadaan baik	0,020	0,85
	dalam keadaan biasa	0,0225	1,30
	dengan batu-batu dan tumbuhan-tumbuhan	0,025	1,75
	dalam keadaan jelek	0,035	
	sebagian terganggu oleh batu-batu atau tumbuhan	0,050	

Koefisien kekasaran k (Strickler)		
Kondisi Saluran	harga k	
saluran lama dengan dindin-dinding sangat kasar	>= 36	
saluran lama dengan dindin-dinding kasar	38	
saluran drainase yang akan diberi tanggul dan		
saluran tersier	40	
saluran drainase baru tanpa tanggul	43,5	
saluran primer dansaluran sekunder dengan debit		
kurang dari 7,5 m3/dt	45 -47 ,5	
saluran terpelihara baikdengan debit lebih besar		
dari 10 m3/dt	50	
saluran dengan pasangan batu kosongan	50	
saluran dengan dinding pasangan batu belah		
yangbaik dan beton tidak dihaluskan	60	
saluran dengan dinding halus, dinding kayu	90	

Menentukan Debit Sungai Berdasarkan Hujan

• Q = 0,278 C. I. A

Dengan

Q = debit sungai m³/dt

I = Intensitas hujan (mm/jam)

 $A = km^2$

- Waktu Konsentrasi: lama waktu yang diperlukan untuk mencapai suatu titik di sungai (Titik pantau, P) oleh air hujan yang jatuh di tempat terjauh dari titik P itu.
- Banjir maksimum terjadi kalau hujan berlangsung dengan intensitas maksimum selama waktu tidak kurang dari lama waktu konsentrasi

Pendekatan Empirik Waktu Konsenrasi (tc)

- L = panjang jarak terjauh dari titik pantau, dihitung menurut jalannya sungai (feet)
- H = selirih ketinggian antara tempat terjauh(h₁) tadi dengan titik pantau (h₀)

$$H = h_1 - h_o$$
 (feet)

•
$$S = H/L$$

$$tc = 0,00013 \frac{L^{0,77}}{S_{0,385}}(jam)$$

$$tc = \frac{L^{1,15}}{7700H^{0,385}}(jam).....Kirpich$$

Jika L dan H dinyatakan dalam meter, maka tc (menit)

$$tc = 0.0195(\frac{L}{\sqrt{S}})^{0.77}$$

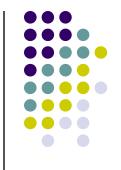
Angka / Koefisien Pengaliran (C)

$$C = \frac{h_{aliran}}{h_{hujan}}$$

estanta den er tikmedeldunspr	ia Lautor-tals Ishais na Sisa Isha- aisisti n	loam berpasir	lempung siltloam	lempung padat
Hutan	din futto	daechadh	Maritana	
kemiringan	0-5 % 5-10 % 10-30 %	0,10 0,25 0,30	0,30 0,35 0,50	0,40 0,50 0,60
Padang rumpu semak-semak	it/	Lashegust- Indixos, las	nenugasd a sh izaeinada sh-izaeinada	Pembuath tanian miga-
kemiringan	0-5 % 5-10 % 10-30	0,10 0,15 0,20	0,30 0,35 0,40	0,40 0,55 0,60
Tanah pertani	an	AND RESIDENCE		the meter
kemiringan	0-5 % 5-10 % 10-30 %	0,30 0,40 0,50	0,50 0,60 0,70	0,60 0,70 0,80

Untuk daerah pertanian:

jenis tanah	dikerja- kan	perum- putan	tanah hutan
laju infiltrasi di atas rata- rata, biasanya tanah pasir dan kerikil	0,20	0,15	0,10
laju infiltrasi sedang, tanah leem	0,40	0,35	0,30
infiltrasi rendah, tanah liat, tanah keras	0,50	0,45	0,40



Type daerah aliran	yang seona dengan atau melelelu	Harga C
Perumputan	tanah pasir, datar, 2%	0,05 - 0,10
	tanah pasir, rata-rata 2-7%	0,10-0,15
	tanah pasir, curam, 7%	0,15-0,20
	tanah gemuk, datar, 2%	0,13-0,17
	tanah gemuk, rata-rata 2-7%	0,18-0,22
	tanah gemuk, curam 7%	0,25-0,35
Business	daerah kota lama	0,75-0,95
	daerah pinggiran	0,50-0,70
Perumahan	daerah "single family"	0,30-0,50
	"multi units", terpisah-pisah	0,40-0,60
	"multi units", tertutup	0,60-0,75
	"suburban"	0,25-0,40
	daerah rumah-rumah aparte-	Harist House I. R.
	men	0,50-0,70
Industri	daerah ringan	0,50-0,80
	daerah berat	0,60-0,90
Petamanan,	a smir ann i refficiell historions	medals amenic res
kuburan	stan meliputi besamya mijan d	0,10-0,25
Tempat ber-	and all many control based on the	
main	We in regular, managers and meet	0,20-0,35
Halaman	Makeure P. Diguilleric and particular viral	in the market makes the
kereta api	went menunjuktion history	0,20-0,40

Type daerah aliran	s dengan masa ulang l waitis konsenirasi k	Harga C
daerah yang tidak diker- jakan	40 menit dengan mara- a-rata 36 mm/jam, 1 01.0	0,10 - 0,30
Jalan	beraspal beton batu	$ \begin{vmatrix} 0,70 - 0,95 \\ 0,80 - 0,95 \\ 0,70 - 0,85 \end{vmatrix} $
Untuk berjalan dan naik kuda Atap	0-5 % 030 5-10 % 0,15 0-80 0,20	$\begin{vmatrix} 0,75 - 0,85 \\ 0,75 - 0,95 \end{vmatrix}$

 Besaran intensitas hujan ditentukan berdasarkan sejumlah data curah hujan dan durasi hujan. Durasi hujan (ti) yang digunakan untuk menentukan model intensitas hujan adalah :

```
15; 30; 60; 90; 120; 180; 240; dan 360 menit, serta 0,25; 0,50; 1,00; 1,50; 2,00; 3,00; 4,00; 5,00 dan 7,00 jam
```

Besarnya intensitas hujan ditentukan menurut :

$$I_{i} = \frac{R_{i}}{t_{i}}$$

dengan:

l_i = Intensitas hujan pada setiap durasi hujan tertentu

R_i = Curah hujan (mm) selama durasi hujan tertentu

t_i = Durasi hujan (menit; jam)

Periode Ulang Intensitas Hujan

Besarnya intensitas hujan untuk setiap ti dan periode ulang kejadian hujan (Ti) ditentukan berdasarkan Gringorten (1963):

$$T = \frac{N + 0.12}{d - 0.44}$$

atau:

$$d = \frac{(N+0,12) + 0,44T}{T}$$

dengan

d = Nomor urut data setelah data diurut dari yang terbesar hingga terkecil

N = Banyaknya data kejadian hujan

T = Periode ulang (tahun)

- Persamaan ini, digunakan karena sifat distribusi hujan jangka pendek bersifat eksponential.
- Nilai T yang digunakan adalah 2; 3; 5; 7; 10; 15 dan 20 tahun. Nilai ini digunakan dengan asumsi bahwa dalam lingkup cekungan kecil umur kegiatan beberapa tindakan pengelolaan sumberdaya air biasanya diproyeksikan dalam kisaran waktu tersebut.
- Nilai N, ditentukan berdasarkan banyaknya data kejadian hujan untuk setiap durasi hujan (ti).
 Dasar penentuan untuk nilai N ini diambil dengan pertimbangan bahwa hasil pemodelan ini merupakan masukan bagi model infiltrasi-kolom tanah untuk menduga besarnya surface runoff pada setiap kejadian hujan.

Metoda Model Intensitas Hujan

• Jenis Talbot (1881) :
$$I = \frac{a'}{t+h}$$

Jenis Sherman (1905) :

$$I = \frac{a}{t^n}$$

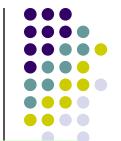
Jenis Ishiguro (1953)

$$I = \frac{a}{\sqrt{t + b}}$$

Jenis Mononobe :

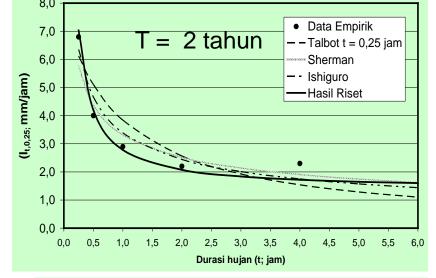
$$I = \frac{R_{24}}{24} \left(\frac{24}{t}\right)^{m}$$

dengan :

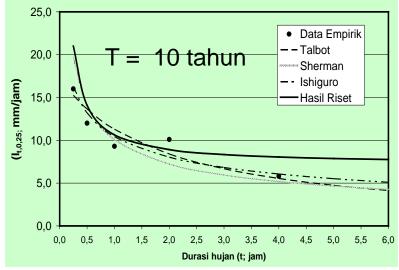

I = Intensitas hujan (mm/jam)

t = Durasi hujan dalam menit (persamaan Talbot, Sherman, Ishiguro); jam (Mononobe).

a', a,b,n,m = Tetapan


R24 = Curah hujan maksimum dalam 24 jam (mm); dalam kaitan dengan kajian ini dimodifikasi menjadi curah hujan harian (mm)

Model Empirik (DAS Cimanuk Hulu (Dede Rohmat)



$$I_{t,p} = 10.87e^{-0.0415.p} + 4.319e^{-0.00223.p} \frac{1}{t}$$

$$I_{t,p} = a_1 e^{a_2 \cdot p} + b_1 e^{b_2 \cdot p} \frac{1}{t}$$

dengan : I_{t,p} adalah intensitas hujan (mm/jam); t adalah durasi hujan (jam); dan p adalah probabilitas hujan (%).

