

Where It Starts: Photosynthesis

Photosynthesis

Metabolic Pathways

Converts light energy to chemical energy.

Photoautotrophs

Organisms that can perform photosynthesis

★Cyanobacteria (prokaryotic-no chloroplast)

*Plants

*Algae

Photosynthesis Equation

Chloroplast

Photosynthetic organelle in plants and algae

Different Types of Energy

Visible Light Spectrum

- **★**Composed of different colors
- **★** Violet (380 nm) to red (750 nm)
- *Longer wavelengths, lower energy

Pigments

****** Chemicals that interact with visible light

** Absorbed colors/wavelength (not seen)

** Reflect colors/wavelength (color seen)

Variety of Plant Pigment

** Photosynthetic Pigments

Chlorophylls

** Accessory Pigments

Carotenoids

Anthocyanins

Phycobilins

Photosynthesis.... a Two-Step Process

- 1. Light-dependent reactions
- 2. Light-independent reaction

Light Dependant Reactions

Pigments

Electron transport chain

ATP Production

Photosystems

*****Capture light energy

★Two types (I and II)

- **★**Composed of....
 - Antenna pigments (accessory pigments)
 - Reaction center (chlorophyll)

Electron Transfer Chains

*Accepts electrons from reaction center

★Electrons pass along chain

*ATP generated.

Thylakoid Membrane Section

Light-Dependent Reactions

Two variants

- 1. Noncyclic pathway
- 2. Cyclic pathway

Noncyclic Electron Flow

- **★**Two-step pathway
- **★**Uses both photosystems (I and II)
- **★**Produces ATP and NADPH
- **★**Split water
- **★**Release oxygen

© 2007 Thomson Higher Education Fig. 5-6a, p.76

ATP Synthesis Noncyclic Pathway

- **★**H⁺ concentrated in thylakoid
- **★**H⁺ Passive transport through ATP synthase
- *ATP produced
- *Chemiosmosis

Fig. 5-7, p.77

Non Cyclic Electron Flow: Summary

Reactants

- Location: Thylakoid Membranes
- * Light
- ★ Photosystem I and II with Chlorophyll
- **★** Water
- ***** Electron Transport Chains
- * ADP
- **★** NADP⁺

Products

- **★** Oxygen
- * ATP
- * NADPH

Cyclic Electron Flow

- **★** Photosystem I only
- * Electrons
 - Donated by chlorophyll a
 - Passed to electron transfer chain
 - Passed back to photosystem I
- **★** Electron flow drives ATP formation
- * No NADPH is formed

Fig. 5-6b, p.76

Cyclic Electron Flow: Summary

Reactants

- Location: ThylakoidMembranes
- * Light
- Photosystem I with Chlorophyll
- * Electron Transport Chain
- * ADP

Products

* ATP

Photosynthesis Equation

Light Independent reaction

Synthesis of glucose

Light-Independent reaction

- **★**Fixes carbon dioxide
- **★**Synthesizes sugar
- **★**Independent of light
- **★**Take place in the stroma
- **★**Calvin-Benson cycle

THESE
REACTIONS
PROCEED IN THE
CHLOROPLAST'S
STROMA

© 2007 Thomson Higher Education Fig. 5-8, p.78

Light Independent reaction

* Reactants

Carbon dioxide

-ATP

- NADPH

– RuBP

* Products

- Glucose

-ADP

 $-NADP^{+}$

- RuBP

Reaction pathway is cyclic and RuBP (ribulose bisphosphate) is used and produced

Photosynthesis Equation

Photosynthesis (Summary)

The C3 Pathway

★ The standard photysynthesis pathway

* The first stable intermediate is a three-carbon PGA

★ Because the first intermediate has three carbons, the pathway is called the C3 pathway

© 2007 Thomson Higher Education

Leaves of basswood, a typical C3 plant. Far right, basswood leaf cross section.

Photorespiration in C3 Plants

- **★On hot, dry days stomata close**
- **★**Inside leaf
 - Oxygen levels rise
 - Carbon dioxide levels drop
- ★RuBP bonds to oxygen instead of carbon dioxide
- **★**Only one PGAL forms instead of two glucose

Cutaway section of leaf

C4 Plants

- * Carbon dioxide is fixed twice
 - Carbon dioxide is stored as a four carbon compound
 - Carbon dioxide is released from the compound for use in Calvin-Benson cycle
- * Evolutionary defense against photorespiration
- **★** Corn and Crabgrass are examples

© 2007 Thomson Higher Education

Corn leaf, cross-section

Fig. 5-9b, p.79

CAM Plants

- ***** Carbon is fixed twice (in same cells)
- * Night
 - Stomates open for gas exchange.
 - Carbon dioxide is fixed by repeated turns of a type of C4 cycle
- **★** Day
 - Carbon dioxide is released and fixed in Calvin-Benson cycle
- **★** Cacti and other fleshy plants

© 2006 Thomson Higher Education

Fig. 5-10, p.79

mesophyll cell

Summary of Photosynthesis

Carbon and Energy Sources

* Photoautotrophs

- Carbon source is carbon dioxide
- Energy source is sunlight

* Heterotrophs

 Get carbon and energy by eating autotrophs or one another

Linked Processes

Photosynthesis

- Energy-storing pathway
- * Releases oxygen
- * Requires carbon dioxide

Aerobic Respiration

- Energy-releasing pathway
- * Requires oxygen
- * Releases carbon dioxide