Where It Starts: Photosynthesis # Photosynthesis Metabolic Pathways Converts light energy to chemical energy. ## **Photoautotrophs** Organisms that can perform photosynthesis **★**Cyanobacteria (prokaryotic-no chloroplast) *Plants *Algae ## Photosynthesis Equation ## Chloroplast #### Photosynthetic organelle in plants and algae ## Different Types of Energy ## Visible Light Spectrum - **★**Composed of different colors - **★** Violet (380 nm) to red (750 nm) - *Longer wavelengths, lower energy ## Pigments ****** Chemicals that interact with visible light ** Absorbed colors/wavelength (not seen) ** Reflect colors/wavelength (color seen) # Variety of Plant Pigment ** Photosynthetic Pigments Chlorophylls ** Accessory Pigments Carotenoids Anthocyanins Phycobilins # Photosynthesis.... a Two-Step Process - 1. Light-dependent reactions - 2. Light-independent reaction ## Light Dependant Reactions **Pigments** Electron transport chain **ATP Production** #### **Photosystems** *****Capture light energy **★**Two types (I and II) - **★**Composed of.... - Antenna pigments (accessory pigments) - Reaction center (chlorophyll) #### Electron Transfer Chains *Accepts electrons from reaction center **★**Electrons pass along chain *ATP generated. #### Thylakoid Membrane Section ## Light-Dependent Reactions #### Two variants - 1. Noncyclic pathway - 2. Cyclic pathway #### Noncyclic Electron Flow - **★**Two-step pathway - **★**Uses both photosystems (I and II) - **★**Produces ATP and NADPH - **★**Split water - **★**Release oxygen © 2007 Thomson Higher Education Fig. 5-6a, p.76 # ATP Synthesis Noncyclic Pathway - **★**H⁺ concentrated in thylakoid - **★**H⁺ Passive transport through ATP synthase - *ATP produced - *Chemiosmosis Fig. 5-7, p.77 # Non Cyclic Electron Flow: Summary #### Reactants - Location: Thylakoid Membranes - * Light - ★ Photosystem I and II with Chlorophyll - **★** Water - ***** Electron Transport Chains - * ADP - **★** NADP⁺ #### **Products** - **★** Oxygen - * ATP - * NADPH #### Cyclic Electron Flow - **★** Photosystem I only - * Electrons - Donated by chlorophyll a - Passed to electron transfer chain - Passed back to photosystem I - **★** Electron flow drives ATP formation - * No NADPH is formed Fig. 5-6b, p.76 ## Cyclic Electron Flow: Summary #### Reactants - Location: ThylakoidMembranes - * Light - Photosystem I with Chlorophyll - * Electron Transport Chain - * ADP #### **Products** * ATP ## Photosynthesis Equation # Light Independent reaction Synthesis of glucose ### Light-Independent reaction - **★**Fixes carbon dioxide - **★**Synthesizes sugar - **★**Independent of light - **★**Take place in the stroma - **★**Calvin-Benson cycle THESE REACTIONS PROCEED IN THE CHLOROPLAST'S STROMA © 2007 Thomson Higher Education Fig. 5-8, p.78 ## Light Independent reaction * Reactants Carbon dioxide -ATP - NADPH – RuBP * Products - Glucose -ADP $-NADP^{+}$ - RuBP Reaction pathway is cyclic and RuBP (ribulose bisphosphate) is used and produced ## Photosynthesis Equation #### **Photosynthesis (Summary)** ## The C3 Pathway **★** The standard photysynthesis pathway * The first stable intermediate is a three-carbon PGA ★ Because the first intermediate has three carbons, the pathway is called the C3 pathway © 2007 Thomson Higher Education Leaves of basswood, a typical C3 plant. Far right, basswood leaf cross section. #### Photorespiration in C3 Plants - **★On hot, dry days stomata close** - **★**Inside leaf - Oxygen levels rise - Carbon dioxide levels drop - ★RuBP bonds to oxygen instead of carbon dioxide - **★**Only one PGAL forms instead of two glucose **Cutaway section of leaf** #### C4 Plants - * Carbon dioxide is fixed twice - Carbon dioxide is stored as a four carbon compound - Carbon dioxide is released from the compound for use in Calvin-Benson cycle - * Evolutionary defense against photorespiration - **★** Corn and Crabgrass are examples © 2007 Thomson Higher Education **Corn leaf, cross-section** Fig. 5-9b, p.79 #### CAM Plants - ***** Carbon is fixed twice (in same cells) - * Night - Stomates open for gas exchange. - Carbon dioxide is fixed by repeated turns of a type of C4 cycle - **★** Day - Carbon dioxide is released and fixed in Calvin-Benson cycle - **★** Cacti and other fleshy plants © 2006 Thomson Higher Education Fig. 5-10, p.79 mesophyll cell ## Summary of Photosynthesis ## Carbon and Energy Sources #### * Photoautotrophs - Carbon source is carbon dioxide - Energy source is sunlight #### * Heterotrophs Get carbon and energy by eating autotrophs or one another #### Linked Processes #### **Photosynthesis** - Energy-storing pathway - * Releases oxygen - * Requires carbon dioxide #### Aerobic Respiration - Energy-releasing pathway - * Requires oxygen - * Releases carbon dioxide