### **Host-Parasite Relationship**

Rita Shintawati

**FPMIPA UPI** 

### INTRODUCTION

 Microorganisms may be divided into three types based on their potential to cause diseases; pathogens, commensals, and nonpathogens

# **NORMAL FLORA**

- The composition of the normal flora varies in different body sites
- Ultimately, the microbiota composition is determined by ecological factors including the presence of receptors of host cell surface for bacterial adherence, pH, oxygen, availability of nutrients, water, host defense, personal hygiene.

#### **TYPES OF PARASITIC RELATIONSHIPS**

#### • A. SYMBIONT:

Has a mutualistic relationship with the host. Both benefit from this relationship

#### B. COMMENSAL

Only the parasite benefits from this relationship but the host is not harmed (i.e. Normal Flora)

#### C. PATHOGEN

The parasite benefits from this relationship at the expense of the Host

The Host is harmed by this interaction and the parasite induces a pathological response in the host

# **TYPES OF PATHOGENS**

#### A. EXTRACELLULAR PATHOGENS

- These pathogens cause disease by growing outside host cells
- They are generally killed by the host's phagocytes
- Virulence is usually determined by an antiphagocytic capsule

#### B. FACULTATIVE INTRACELLULAR PATHOGENS

- These pathogens usually cause disease by growing inside host cells
- But they can also grow out side the host cell and they can be grown in artificial culture medium in the laboratory
- They are usually not killed readily by the host's phagocytes
- Virulence is usually determined by many factors

# **TYPES OF PATHOGENS**

#### C. OBLIGATE INTRACELLULAR PATHOGENS

- These pathogens cause disease by growing inside host cells
- They will not grow outside living cells
- Virulence is usually determined by many factors

#### D. TOXIGENIC PATHOGENS

• Cause disease primarily by producing exotoxins that are essential for the virulence of the pathogen

### **HOST MECHANISM FACTORS**

- Physical barriers
- Cleansing mechanism
- Antimicrobial substances
- Normal flora
- Phagocytosis
- Inflammation

# **Physical barriers**

- Healthy skin, intact skin, mucous membranes
- Normal flora→ low pH, competition for nutrients, production of bactericidal substances→prevent colonization
- Acid environment of the skin

#### Table 1. Protective Characteristics of The Skin

| Skin Structure                                 | Protective Activity                                                                                                                                                           |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outer layer                                    | Physical barrier to microbial penetration<br>Sloughing of outer layers remove attached<br>bacteria<br>Provide dry, acidic, and cool conditions that<br>limit bacterial growth |
| Hair follicles, sweat glands, sebaceous glands | Production of acids, alcohols, and toxic lipids that limit bacterial growth                                                                                                   |
| Conjunctival epithelium covering the eyes      | Flushing action of tears removes<br>mocroorganisms<br>Tears contain lysozyme that destroys bacterial<br>cell wall                                                             |
| Skin-associated lymphoid tissue                | Mediated specific and non-specific protection mechanisms against microorganisms that penetrate outer layers                                                                   |

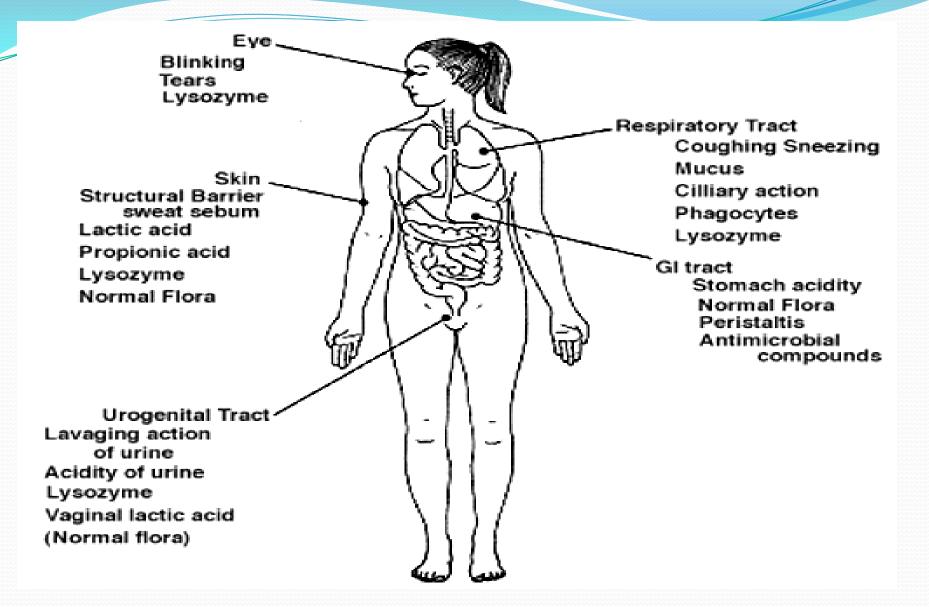

Sumber: Bailey & Scott's diagnostic microbiology, 1998.<sup>1</sup>

 Table 2. Protective Characteristics of Mucous Membranes

\_\_\_\_

| Mucous Membrane Structure         | Protective Activity                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mucosal cells                     | Rapid sloughing for bacterial removal<br>Tight Intercellular junctionprevent bacterial<br>penetration                                                                                                                                                                                                                                                                                                                                               |
| Goblet cells                      | <ul> <li>Mucus production:</li> <li>Protective lubrication of cells</li> <li>Bacterial trapping</li> <li>Contain specific antibodies with specific activity against bacteria</li> <li>Provision of antibacterial substances to mucosal surface : <ul> <li>Lysozym: degradesbacterial cell wall</li> <li>Lactoferrin: competes for bacterial iron supply</li> <li>Laktoperoxidase: production of substances toxix to bacteria</li> </ul> </li> </ul> |
| Mucosa-associated lymphoid tissue | Mediates specific responses against bacteria that penetrate outer layers                                                                                                                                                                                                                                                                                                                                                                            |

Sumber: Bailey & Scott's diagnostic microbiology, 1998.<sup>1</sup>



# **Cleaning Mechanisms**

- Desquamation of the skin surface
- Fluids of the eye, respiratory, digestive, urinary, genita tracts
- Nasal hairs, ciliary epithelium, mucous membrane
   → Respiratory tract
- Mucus secretions & peristalsis → prevent the organisms from attaching to the intestinal epithelium
- Genitourinary tract → cleansed by the voiding urine
- Vagina  $\rightarrow$  acidity

# **Antimicrobial substances**

- Lysozyme: hydrolyzes peptidoglycan layer bacterial cell walls
- Found in serum, tissue fluids, tears, breast milk, saliva, and sweat
- Antibodies (esp. secretory IgA) are found in mucous secretions of the respiratory, genital, and digestive tracts → serve as opsonin → enhancing phagocytosis or fix complement and neutralize the infecting organism

- Serum $\rightarrow \beta$ -lysins $\rightarrow$  lethal against Gram+ bacteria
- β-lysins are released from platelets during coagulation

# **Normal Flora**

• Nonpathogenic microorganisms compete with pathogens for nutrients and space

lessen the chance that the pathogen will colonize the host

Some flora normal bacteria produce bacteriocins

 → inhibit growth of closely related bacteria →
 eliminate other bacteria that would compete for
 nutrients and space

# Phagocytosis

- Primary mechanism in the host defense against extracellular bacteria, virus, fungi
- First line defense → polymorphonuclear neutrophils (PMN) and macrophages

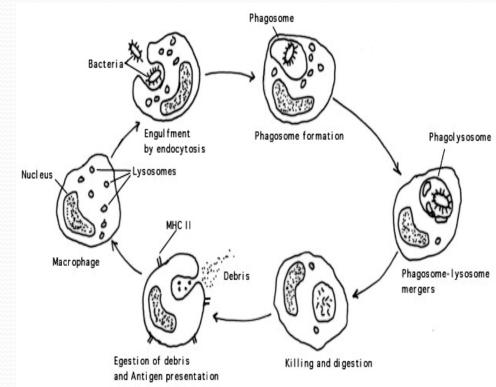
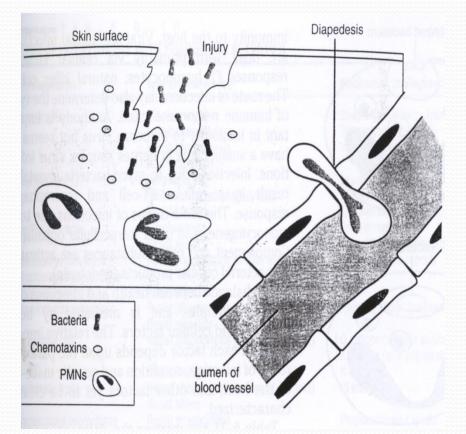
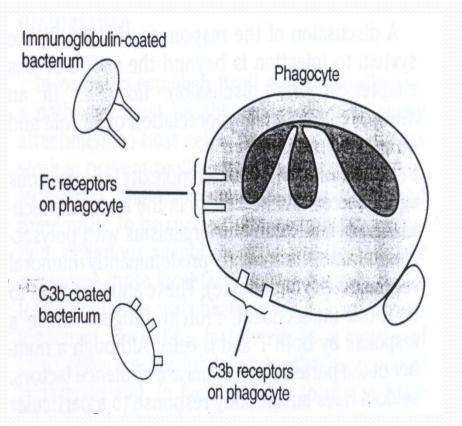




Figure 2. Phagocytosis Sourcer: Todar,University of Wisconsin Department of Bacteriology, 2002.<sup>4</sup>

- Four activities must occur for phagocytosis to take place and be effective in host defense:
  - 1. Migration to the area of infection
    - (chemotaxis)
  - 2. Attachment to the particle of the phagocyte
  - 3. Ingestion
  - 4. Killing


### Chemotaxis



Figures 3. Phagocytosis: chemotaxis Source:Bailey & Scott's Diagnostic microbiology, 1998.<sup>1</sup>

- PMN circulate through the body → diapedesis
- When infections occur
   → massive number of PMN accumulate at the site
- Migration of PMN to the area needing their service → chemotaxis

### Attachment



Gambar 4. Phagocytosis: *attachment* Source: Bailey & Scott's Diagnostic microbiology, 1998.<sup>1</sup>

- Attachment is facilitated by specific antibodies to the microorganism
- Neutrophil has variety of receptors: Fc portion of IgG1, IgG3, C3B component of complement
- These 3 factors can and do bind to the invading microorganism
- The coating of the bacterium
   → enhanced phagocytosis
   PMN → opsonization

### Ingestion

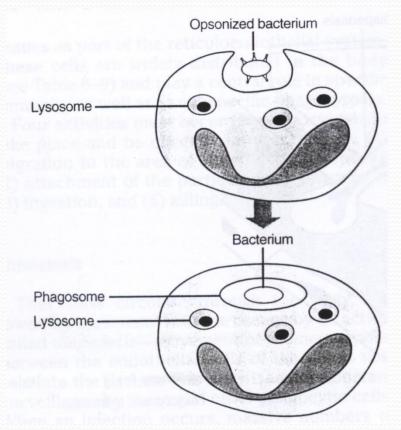



Figure 5. Phagocytosis: ingestion Source: Bailey & Scott's Diagnostic microbiology, 1998.<sup>1</sup>

- The cell membrane of the phagocytic cell invaginates and surrounds the attach particle
- Particle is taken into the cytoplasm and enclosed within a vacuole called a phagosome
- The phagosome fuses with lysosomes (vacuole containing hydrolytic enzymes)

# Killing

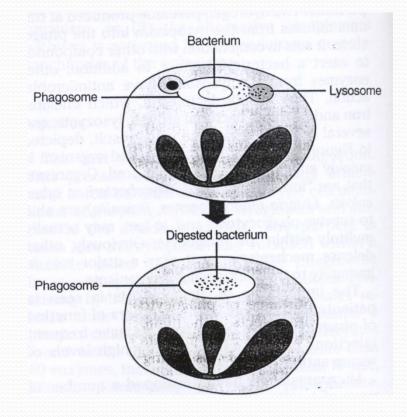



Figure 6. Phagocytosis: killing Source: Bailey & Scott's Diagnostic microbiology, 1998.<sup>1</sup>  Metabolic or respiratory burst → metabolic activity of the neutrofil and macrophage → glycolysis, the hexose monophosphate siffuhunt athway, oxygen utilization, and production of lactic acid and H2O2

- H<sub>2</sub>O<sub>2</sub>  $\rightarrow$  bactericidal
- Lysosome enzymes: lactoferin, lysozyme

# Inflammation

- Body's response to injury or foreign body
- Accumulation of large numbers of phagocytic cells
- These leukocytes release mediators or cause other cell types to release mediators → cause edema, erythema, etc
- The enzymes released by the phagocytes digest the foreign particles, injured cells, and cell debris

### Immune Response

- Humoral immune response
- Cellular immune response
- Factors determine immune response
  - Parasite
  - Route of infection
  - Host condition

### **INFECTIOUS AGENTS FACTORS**

- Adherence
- Proliferation
- Tissue damage
- Invasion
- Dissemination

# Adherence

- Most infectious agents must attach to host cells before infection occurs
- In some diseases due to exotoxin, adherence is not important
- The cell surface structures that mediate attachment are called adhesins
- Host cells must possess necessary receptors for the adhesins
- If the host or infectious agent undergoes a mutation that changes the structure of the adhesins or receptor → adherence will not take place

- Main adhesins in bacteria are the pili (fimbriae) and the surface poysaccharides
- Pili enable bacteria to adhere to host cell surface

# Proliferation

- In order to establish itself and cause disease, a pathogen must be able to replicate
- Numerous host factors work to prevent proliferation (secretory antibody, lactoferrin, lysozyme)

# **Tissue Damage**

- Disease from infection is noticeable only if tissue damage occurs
- The damage may be from: toxins or inflammatory substances → immunologically mediated damage

# Invasion

- Process of penetrating, and growing in tissues
- Localized and involves only a few layers of skin

# Dissemination

• Spread of organisms to distant sites (organ, tissues)

# **ROUTES OF TRANSMISSION**

- Airborne transmission
- Transmission by food and water
- Close contact
- Cuts and bites
- Arthropods
- Zoonoses

# **Airborne Transmission**

- Respiratory infectious disease
- Droplet nuclei

# Transmission by Food and

# Water

- Fecal-oral route
- Infection →
- invasion
  - toxin

## **Close Contact**

Passage of organisms by salivary, skin, and genital contact

# **Cuts and Bites**

- Bites  $\rightarrow$  wound  $\rightarrow$  infection
- eg. rabies

# Arthropods

- Direct infection eg. scabies
- Vector
  - eg. malaria

## Zoonoses

Disease of animals that is trnsmitted to human