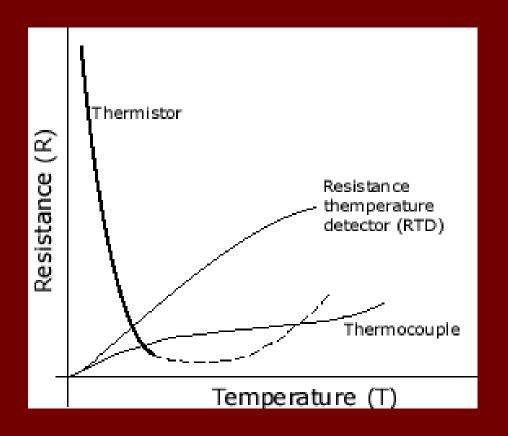
Synthesis and Characterization of TiO₂ Added-ZnFe₂O₄ Ceramics for NTC Thermistors


Dani Gustaman Syarif 1), Wiendartun 2), Mimin Sukarmin 2)

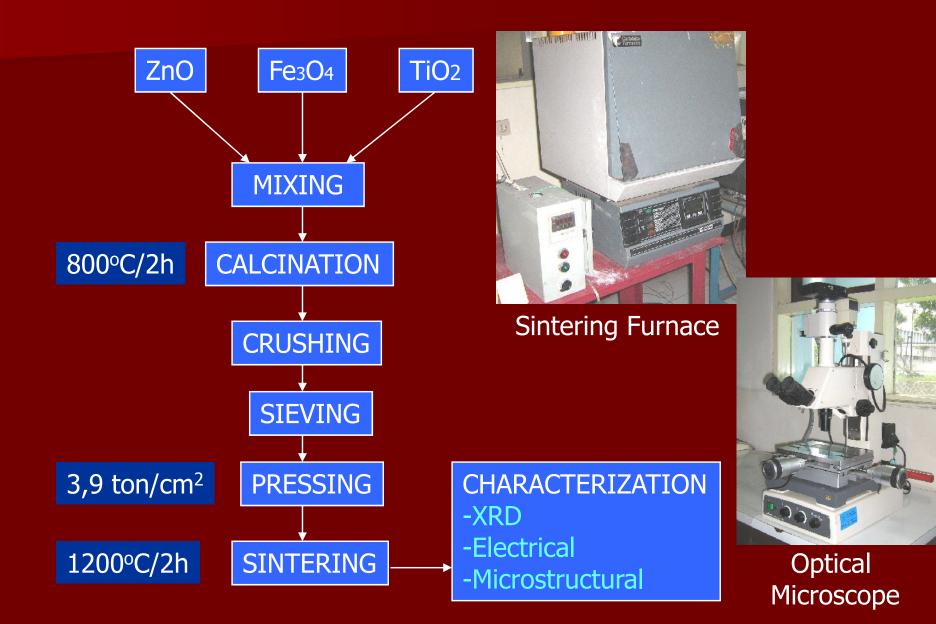
 Nuclear Technology Center of Materials and Radiometry – BATAN, Bandung.
 Department of Physics, UPI, Bandung.

INTRODUCTION

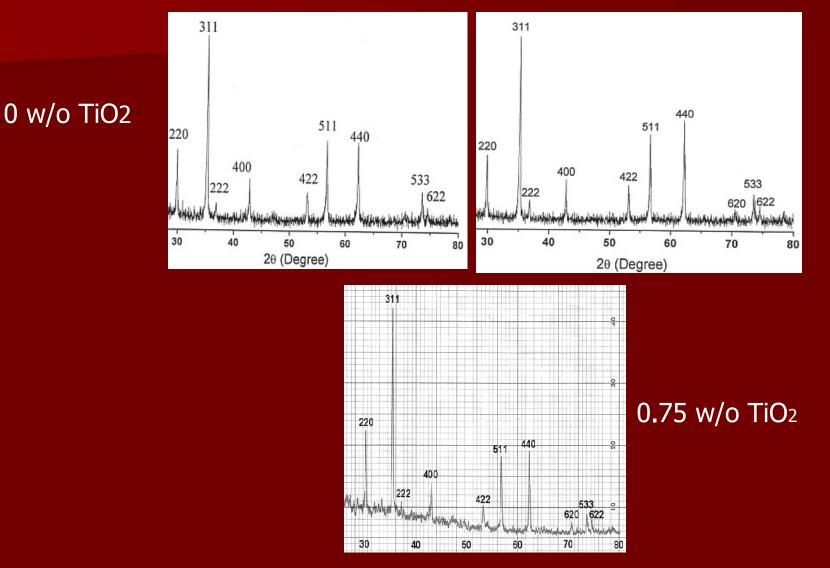
THERMISTOR → Thermally Sensitive Resistor.
 NTC CHARACTERISTIC :

PRODUCT EXAMPLES:

INTRODUCTION (Continuation)

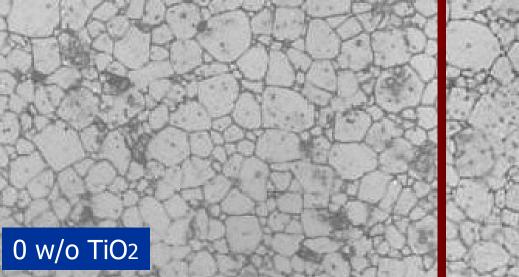

Important electronic component.

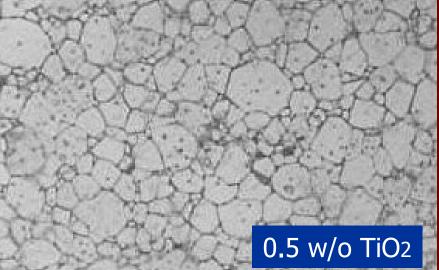
- Sectors: Biomedical, aerospace, instrumentation, communications, automotive and HVACR (Heating, Ventilation, Air conditioning and Refrigeration).


-Application : Temperature measurement, circuit compensation, suppression of in rush-current, flow rate sensor and pressure sensor.

- Most, thermistors are produced from spinel ceramics based on transition metal oxides forming general formula AB2O4.
- Need alternative (especially based on abundant material in Indonesia, e.g. hematite) → ZnFe2O4 is proposed, including that added with TiO2.
- Predicted that the TiO2 addition can improve the characteristics of the ZnFe2O4 ceramic for NTC thermistors.

EXPERIMENT

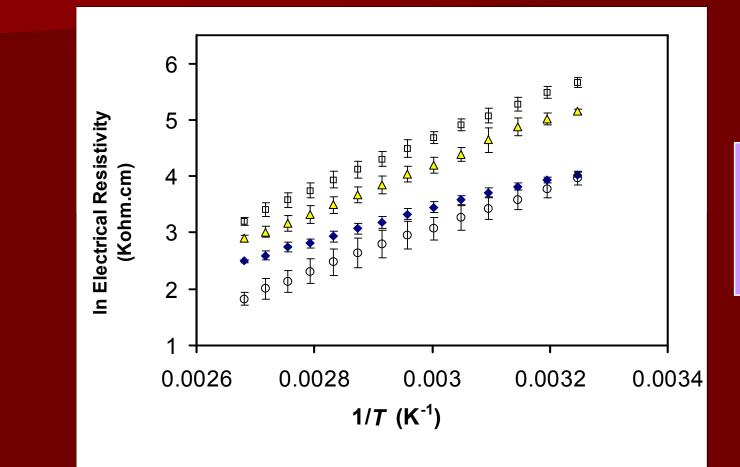

RESULTS (XRD)



0.5 w/o TO₂

XRD profiles of ZnFe2O4 based-ceramics.

RESULTS (Microstructure)



Microstructures of the ZnFe₂O₄ based-ceramics.

RESULTS (Electrical Characteristics)

♦ 0 w/o TiO2
○ 0.25 w/o TiO2
△ 0.50 w/o TiO2
□ 0.75 w/o TiO2

Ln resistivity (ρ) vs 1/*T* of TiO₂ added- ZnFe₂O₄ ceramics.

RESULTS (Electrical Characteristics)

No.	Additive of TiO ₂ (w/o)	B (°K)	α (%/°K)	ρ _{RT} (Kohm- cm)			
	(w/0)			CIII)	No.	TiO ₂ (w/o)	Ea
1.	0	2781	3.09	81	1		(eV)
2.	0.25	3721	4.14	81	1.	0	0.24
					2.	0.25	0.32
3.	0.50	4164	4.63	293	3.	0.50	0.36
4.	0.75	4350	4.83	493	4.	0.75	0.38

Market requirement for B is \geq 2000 °K and α is \geq 2.2 %/oK, and Ea is 0.1 -1.5 eV [7], market requirement for ρ RT = 10 ohm.cm-1 Mohm.cm [4].

CONCLUSIONS

- The ZnFe₂O₄ ceramics can be applied as NTC thermistor.
- The grain size of the ZnFe2O4 ceramics tends to intact by addition of TiO2 up to 0.5 w/o and decreases abruptly at the TiO2 concentration of 0.75 w/o.
- The abruptly change is caused by the segregation of the added TiO₂ at grain boundaries which inhibited grain growth during sintering.
- A part of the added TiO₂ may be dissolved in ZnFe₂O₄ ceramics.
- The addition of TiO₂ increases the room temperature resistivity (pRT) and the thermistor constant (B) of the ZnFe₂O₄ ceramics due to the segregated TiO₂.
- The TiO₂ concentration of 0.25 w/o seems to be the best one in low room temperature resistivity application point of view.
- The value of (pRT) and (B) of the ZnFe2O4 ceramics made in this work fits the market requirement.

THANK YOU