PENGARUH PENAMBAHAN Al₂O₃ TERHADAP KARAKTERISTIK KERAMIK CuFe₂O₄ UNTUK TERMISTOR NTC

Wiendartun¹⁾, Endi Suhendi¹⁾, Andhy Setiawan¹⁾, Dani Gustaman Syarif²⁾, Guntur DS²⁾

¹⁾ Jurusan Fisika FMIPA UPI, Jl.Dr Setiabudhi 229 Bandung, email: wien@upi.edu ²⁾ PTNBR BATAN, Jl.Tamansari 71 Bandung, email: danigustas@batan-bdg.go.id

Abstrak.

Pengaruh penambahan Al₂O₃ terhadap karakteristik keramik CuFe₂O₄ untuk thermistor NTC telah dilakukan. Keramik ini dibuat dengan cara mengepres serbuk bahan campuran homogen dari CuO, Fe₃O₄ dan Al₂O₃ (0, 0,25 dan 0,75 % berat) dengan komposisi yang sesuai untuk menghasilkan keramik berbasis CuFe₂O₄ dan menyinter pellet hasil pengepresan pada suhu 1100 $^{\circ}$ C selama 2 jam di dalam atmosfer udara. Karakterisasi listrik dilakukan dengan cara mengukur resistivitas listrik keramik tersebut pada suhu bervariasi (25 $^{\circ}$ C-100 $^{\circ}$ C). Analisis struktur mikro dan struktur kristal dilakukan masing-masing dengan menggunakan mikroskop optik dan difraktometer sinar-x (XRD). Analisis XRD menunjukkan bahwa CuFe₂O₄ tanpa dan dengan penambahan Al₂O₃ mempunyai struktur kristal spinel tetragonal. Dari data XRD, tampilan untuk phase kedua tidak dapat ter identifikasi .Berdasarkan data listriknya diketahui bahwa penambahan Al₂O₃ memperbesar konstanta thermistor (B) dan resistivitas listrik suhu ruang (ρ_{RT}). Untuk keramik CuFe₂O₄ diperoleh harga B = 2548-2590 $^{\circ}$ K dan ρ_{RT} = 290-818 Ω cm), dari keramik berbasis CuFe₂O₄ *Al*₂O₃

Abstract.

The effect of Al₂O₃ addition on the characteristics of CuFe₂O₄ ceramics for NTC thermistors has been studied. The ceramics were produced by pressing a homogenous mixture of CuO, Fe₃O₄ and Al₂O₃ (0, 0.25 and 0.75 w/o) powders in appropriate proportions to produce CuFe₂O₄ based ceramics and sintering the pressed powder at 1100 ^oC for 2 hours in air. Electrical characterization was done by measuring electrical resistivity of the ceramics at various temperatures (25 ^oC-100^oC). Microstructure and crystal structure analyses were carried out by using an optical microscope and x-ray diffractometer (XRD), respectively. The XRD analyses showed that the CuFe₂O₄ with and without Al₂O₃ addition have crystal structure of tetragonal spinel. The presence of second phase could not be identified from the XRD data. According to the electrical data, it was known that the Al₂O₃ addition increased the thermistor constant (B) and the room temperature electrical resistivity (ρ_{RT}). The value of B and (ρ_{RT}) of the produced CuFe₂O₄ ceramics namely B = 2548-2590 ^oK and ρ_{RT} = 290-818 Ω cm), fitted market requirement.

Key words : Thermistor, NTC, CuFe₂O₄, Al₂O₃

1. PENDAHULUAN.

Thermistor NTC sudah sangat luas digunakan didunia, karena kemampuannnya untuk digunakan di berbagai bidang electronik seperti : pengukur suhu , pembatas arus listrik, sensor aliran air, sensor tekanan [1]. Telah dikenal bahwa sebagian besar termistor NTC dibuat dari keramik berstruktur spinel yang dibentuk oleh oksida logam transisi dengan rumus umum AB₂O₄ dengan A adalah ion logam pada posisi tetrahedral dan B adalah ion logam pada posisi octahedral [2-10]. Banyak penelitian dilakukan untuk memperbaiki karakteristik termistor NTC berstruktur spinel [6, 7, 11]. Sejauh ini studi untuk mempelajari pengaruh penambahan Al₂O₃ terhadap karakteristik spinel keramik CuFe₂O₄ belum dilakukan.

Pada umumnya, keramik CuFe₂O₄ digunakan sebagai magnet lunak [12-15] juga sebagai katalis [16-18], tetapi sebenarnya keramik CuFe₂O₄ mempunyai kemampuan untuk menjadi thermistor NTC karena bersifat semi konduktif. Berdasarkan diagram fase CuO-Fe₂O₃ [19], ada suatu daerah dimana komposisi keramik CuO dan Fe₂O₃ bila dipanaskan pada suhu 1100 0 C akan mempunyai sebuah struktur mikro yang berisi fase cair. Pada suhu ruang , material yang meleleh ini mungkin akan berada di batas butir. Secara teori material batas butir akan berpengaruh pada karakteristik keramik, khususnya pada karakteristik listrik. Pada saat zat additif (Al₂O₃) ditambahkan, karakteristik dari CuFe₂O₄ akan berubah sebab kemungkinan ada dua kondisi. Kondisi itu adalah, pertama, aditif (Al₂O₃) larut padat di dalam CuFe₂O₄ dengan cara mensubstitusikan ion-ion Cu ataupun ion-ion Fe, kedua, aditif (Al₂O₃) tidak dapat larut tetapi meleleh pada batas butir dan pada keadaan tertentu akan bereaksi dengan fase cair.

Pada saat kondisi pertama terbentuk , ketika substitusi dari Fe^{3+} dan / atau Cu^{2+} menghasilkan electron bebas pada pita konduksi, keramik $CuFe_2O_4$ akan mempunyai resistivitas listrik yang rendah. Sebaliknya pada saat kondisi kedua terjadi, resistivitas listriknya mungkin semakin tinggi sebab keberadaan aditif (Al₂O₃) dibats butir akan mengubah struktur mikronya. Di dalam penelitian kami sebelumnya [11], telah diketahui bahwa penambahan TiO₂, resistivitas listrik pada suhu ruang (ρ_{RT}) dan konstanta thermistor (B) cenderung mengalami kenaikan. Pada penelitian ini kami ingin mengetahui bagaimana pengaruh penambahan Al₂O₃ terhadap karakteristik keramik CuFe₂O₄ untuk thermistor NTC, khususnya karakteristik listik berdasarkan pada hipotesis yang disebutkan diatas Hasilnya dibandingkan dengan penelitian kami sebelumnya.

2. TINJAUAN PUSTAKA

Termistor NTC mempunyai karakteristik yang khas seperti gambar 1 dibawah ini

Gambar 1. Grafik hubungan antara Temperatur (T) dan Resistivitas listrik (R) untuk thermistor NTC dan sensor lainnya.

Tahanannya akan berkurang secara eksponensial, jika suhu termistor bertambah. Hubungan antara tahanan dan suhu termistor diekspresikan pada persamaan (1) [2-11]

$$\mathbf{R} = \mathbf{R}_0. \text{ Eksp.}(\frac{B}{T})....(1)$$

Dengan

R = Tahanan termistor (Ohm)

 R_0 = Tahanan termistor pada suhu awal (Ohm)

 $B = Konstanta termistor (^{o}K)$

T =Suhu termistor ($^{\circ}K$)

Konstanta termistor (B) dari persamaan (1) dapat ditulis menjadi persamaan (2)[6],

Dengan

B = Konstanta termistor (°K) $\Delta E = Energi aktivasi (eV),$

K = Konstanta Boltzmann
$$\left(\frac{eV}{\circ K}\right)$$

Secara empiris konstanta B sering pula dihitung menggunakan persamaan (3)[1,2]

Dengan

R1 = Tahanan pada suhu T1 R2 = Tahanan pada suhu T2 T2 = $85^{\circ}C$ = $358,16^{\circ}K$ T1 = $25^{\circ}C$ = $298,16^{\circ}K$

Sensitivitas termistor dapat diketahui dengan memakai persamaan (4)[1,11],

dengan

 α = Sensitifitas termistor,

 $B = Koefisien termistor dalam {}^{o}K$

 $T = suhu dalam {}^{o}K$

Semakin besar harga α dan B, kualitas termistor semakin baik.

3. METODE PENELITIAN

Serbuk CuO, Fe₃O₄ dan aditif Al₂O₃ sebesar 0; 0,25 dan 0,75 % berat ditimbang dengan komposisi yang sesuai untuk membuat keramik berbasis CuFe₂O₄. Campuran serbuk tersebut dikalsinasi pada suhu 800 ⁰C selama 2 jam. Setelah dikalsinasi serbuk campuran digerus dan diayak dengan ayakan yang berukuran < 38 μ m. Serbuk hasil ayakan di press dengan tekanan 4 ton/cm² sehingga membentuk pellet mentah. Setelah kering , pelet mentah kemudian disinter pada suhu 1100 ⁰C selama 2 jam dalam atmosfer udara tungku. Pelet hasil sinter dipotret untuk mengetahui penampilan visualnya.

Secara keseluruhan proses pembuatan keramik berbasis CuFe₂O₄.dengan aditif Al₂O₃ dapat diperlihatkan seperti diagram alir pada gambar 2 dibawah ini:

Gambar 2. Diagram alir proses penelitian.

Struktur kristal dari pellet yang sudah disinter kemudian dianalisis dengan difraksi sinarx (XRD) dengan menggunakan radiasi K α pada tegangan 40 kV dan 2rus 25 mA. Setelah melalui proses pengampelasan secara berjenjang dengan kertas amplas yang berbeda ukuran (nomor), pelet dipoles dan dietsa secara termal. Struktur mikro dari pellet ini di eksaminasi dengan mikroskop optik. Karakterisasi listrik dilakukan setelah kedua sisi pelet hasil sinter dilapisi dengan pasta konduktif perak. Setelah perekatnya kering di suhu ruang dan dipanaskan pada suhu 750 0 C selama 10 menit . Karakterisasi listrik dilakukan melalui pengukuran resistvitas listrik pada berbagai suhu dari suhu 25 0 C hingga 100°C dengan interval 5°C.

4. HASIL DAN PEMBAHASAN

4.1. HASIL

Bentuk visual pellet keramik CuF_2O_4 ditambah Al_2O_3 ini dapat dilihat pada gambar 3, ternyata tampilan keramik ini terlihat baik.

Gambar. 3. Penampilan visual pellet keramik CuF₂O₄ ditambah Al₂O₃ ternyata tampilan keramik ini terlihat baik.

Hasil analisis XRD diperlihatkan pada gambar 4, 5 dan 6 yang menunjukkan pola difraksi keramik CuFe₂O₄ yang diberi penambahan aditif masing-masing sebesar 0; 0,25 dan 0,75 % berat .

Gambar 4. Pola difraksi sinar-x keramik CuFe₂O₄ tanpa aditif. Memperlihatkan struktur spinel tetragonal.

Gambar 5. Pola difraksi sinar-x keramik CuFe₂O₄ yang ditambah 0.25 w/o Al₂O₃. Memperlihatkan struktur spinel tetragonal.

Gambar 6. Pola difraksi sinar-x keramik CuFe₂O₄ yang ditambah 0.75 w/o Al₂O₃. memperlihatkan struktur spinel tetragonal.

Data XRD pada gambar 4-6, memperlihatkan pola difraksi dari $CuFe_2O_4$ adalah spinel tetragonal.

Hasil struktur mikro dari keramik $CuFe_2O_4$ tanpa penambaan dan yang masing-masing ditambahkan 0,25 dan 0,75 % berat Al_2O_3 .ditunjukkan pada gambar 7, 8, dan 9.

Fig. 7. Struktur mikro keramik CuFe₂O₄ tanpa penambahan Al₂O_{3.}

Gambar 8. Struktur mikro keramik CuFe₂O₄ yang ditambah 0.25 w/o Al₂O₃.

Gambar 9. Struktur mikro keramik CuFe₂O₄ yang ditambah 0.75 w/o Al₂O₃.

Hasil karakterisasi listrik diperlihatkan pada : gambar 10 dan tabel 1

Gambar 10. Hubungan antara ln Resistivitas listrik and 1/T keramik CuFe₂O₄ tanpa dan dengan aditif Al₂O₃.

No	Penambahan	В	α	ρ_{RT}
	Al ₂ O ₃ (w/o)	(⁰ K)	(%/ ⁰ K)	(Ohm-cm)
1	0	2548	2,83	290
2	0,25	2378	2,64	217
3	0,75	2590	2,88	818

Tabel 1. Karakteristik listrik keramik CuFe₂O₄ tanpa dan dengan aditif Al₂O₃.

4.2. PEMBAHASAN.

Penampilan visual pellet keramik CuF₂O₄ ditambah Al₂O₃. ditunjukkan pada gambar 3, ternyata tampilan keramik ini terlihat baik, penampilan visual yang baik memperlihatkan bahwa parameter penyinteran yang digunakan sudah sesuai untuk membuat keramik yang baik.

Hasil analisis XRD diperlihatkan pada gambar 4, 5 dan 6 mempunyai pola difraksi yang hampir sama. Setelah dibandingkan dengan pola difraksi standart CuFe₂O₄ dari JCPDS N0.34-0425, menunjukkan bahwa semua keramik CuFe₂O₄ tanpa dan dengan penambahan Al₂O₃ mempunyai struktur kristal spinel tetragonal. Hal ini memperlihatkan bahwa pendinginan selama proses penyinteran berlangsung relatif lambat. Sedangkan untuk menghasilkan struktur kubik dibutuhkan pendinginan yang cepat. Puncak tambahan tidak teridentifikasi , kemungkinan karena konsentrasi aditif lebih kecil dari pada batas minimum ketelitian difraksometer sinar-x yang digunakan.. Terbentuknya CuFe₂O₄ juga memperlihatkan bahwa sintesis dari CuO dan Fe₃O₄ pada suhu 1100°C selama 2 jam dapat dilakukan dengan baik.

Dari hasil struktur mikro yang ditunjukkan pada gambar 7, 8 dan 9 , butir-butir yang cenderung bundar disebabkan oleh material yang meleleh di batas butir. Menurut diagram fase CuO-Fe₂O₃ [19Anonymous, Phase diagram for Ceramists, ASTM.], terdapat material yang meleleh ada sekitar 15% mol, selama penyinteran pada suhu1100°C. Konsentrasi material yang meleleh relatif besar sehingga wajar jika butir-butir relatif sangat besar dan cenderung bundar.yang meleleh. Material yang meleleh di batas butir menjadi promotor pertumbuhan butir. Di dalam sampel yang mengandung Al₂O₃, aditif dapat larut atau tersegregasi. Jika tidak ada interaksi antara material meleleh awal dan Al₂O₃, serta Al₂O₃ terlarut di dalam CuFe₂O₄

dengan mensubstitusi Fe³⁺ atau Cu^{2+,} maka resistivitas akan turun atau tetap. Akan turun ketika ion Al mensubstitusi ion Cu dan tidak berubah ketika mensubstitusi ion Fe³⁺. Pada kondisi ini struktur mikro akan sama dengan struktur mikro keramik CuFe₂O₄ tanpa aditif. Fitur material batas butir di dalam sampel yang ditambah Al₂O₃ (Gambar 8 dan 9) berbeda dengan fitur material batas butir keramik tanpa aditif (gambar 7). Hal ini jelas memperlihatkan bahwa Al₂O₃ cenderung tersegregasi di batas butir. Ada kemungkinan Al₂O₃ yang tersegregasi bereaksi dengan material leleh awal tetapi tidak dapat dilihat dari data XRD. Al₂O₃ yang tersegregasi kemudian menghambat pertumbuhan butir. Tebal material batas butir keramik tanpa Al₂O₃ lebih tipis dari tebal material yang sama pada keramik dengan aditif Al₂O₃. Inilah faktor yang dapat mengubah karakteristik listrik. Pada penelitian kami sebelumnya tentang pengaruh aditif SiO₂ dan aditif TiO₂, ditemukan bahwa SiO₂ dan TiO₂ cenderung tersegregasi di batas butir. Ada kemungkinan bahwa material yang tersegregasi ini saling bereaksi dan menguap selama penyinteran dan meninggalkan rongga yang relatif besar.

Dari data listrik pada gambar 10 menunjukkan bahwa karakteristik listrik keramik mengikuti sifat dari thermistor NTC (gambar 1 dan persamaan 1). Perubahan karakteristik listrik dipengaruhi oleh perubahan struktur mikro yang berubah dengan adanya Al_2O_3 . Pertambahan (ρ_{RT}) dan (B) utamanya disebabkan oleh perubahan fitur material batas butir. Keramik yang mengandung butir kecil dan banyak material batas butir mempunyai area batas butir yang luas. Karena batas butir menjadi pusat hamburan pembawa muatan, frekuensi relatif elektron bertambah menyebabkan pertambahan resistivitas listrik suhu ruang dan konstanta termistor.

Seperti terlihat pada tabel 1, semua keramik memiliki karakteristik yang memenuhi kriteria pasar. Harga resitivitas suhu ruang yang demikian kecil, menjadikan keramik ini mempunyai aplikabilitas yang luas.

5. KESIMPULAN

Dengan penambahan Al_2O_3 , menyebabkan ukuran butiran dari keramik $CuFe_2O_4$ akan mengecil , sebab penambahan Al_2O_3 memperlihatkan selama sintering meninggalkan rongga (pori) dan cenderung tersegregasi di batas butir . Penambahan aditif Al_2O_3 akan menaikkan harga resistivitas listrik suhu ruang (ρ_{RT}) dan konstanta thermistor (B). Nilai resistivitas listrik suhu ruang ($\rho_{RT} = 290-818 \ \Omega cm$) dan konstanta thermistor (B = 2548-2590 0 K) .Keramik CuFe₂O₄ yang dibuat ini memenuhi kebutuhan pasar.

6. UCAPAN TERIMA KASIH

Kami mengucapkan terimakasih kepada semua pihak yang telah memberi bantuan dalam kegiatan penelitian dan penulisan artikel ini. Penelitian ini didanai oleh Hibah Penelitian Kerjasama Antar Perguruan Tinggi (Pekerti) dengan Kontrak Nomor: 014/SPPP/PP/DP2M/II/2006 tanggal 24 April 2006.

7. DAFTAR PUSTAKA

- 1. BetaTHERM Sensors [on line]. Available: http://www.betatherm.com.
- 2. NA EUN SANG, PAIK, UN GYU, CHOI SUNG CHURL, "The effect of a sintered microstructure on the electrical properties of a Mn-Co-Ni-O thermistor", Journal of Ceramic Processing Research, Vol.2, No. 1, pp 31-34, 2001.
- 3. MATSUO YOSHIHIRO, HATA TAKUOKI, KURODA TAKAYUKI, "Oxide thermistor composition, US Patent 4,324,702, April 13, 1982
- 4. JUNG HYUNG J, YOON SANG O, HONG KI Y, LEE JEON K, "Metal oxide group thermistor material", US Patent 5,246,628, September 21, 1993.
- 5. HAMADA KAZUYUKI, ODA HIROSHI, "Thermistor composition", US Patent 6,270,693, August 7, 2001.
- 6. PARK K, "Microstructure and electrical properties of $Ni_{1.0Mn2-x}Zr_xO_4$ ($0 \le x \le 1.0$) negative temperature coefficient thermistors", Materials Science and Engineering, B104, pp. 9-14, 2003.
- 7. PARK K, BANG D.Y., "Electrical properties of Ni-Mn-C0-(Fe) oxide thick film NTC thermistors", Journal of Materials Science: Materials in Electronics, Vol.14, pp. 81-87, 2003.
- FRITSCH SHOPIE GULEMET, SALMI JAOUAD, SARRIAS JOSEPH, ROUSSET ABEL, SCHUURMAN SHOPIE, LANNOO ANDRE, "Mechanical properties of nickel manganitesbased cermics used as negative temperature coefficient thermistors", Materials Research Bulletin, Vol. 39, pp. 1957-1965, 2004.
- 9. R. SCHMIDT, A. BASU, A.W. BRINKMAN, "Production of NTCR thermistor devices based on $NiMn_2O_{4+\delta}$ ", Journal of The European Ceramic Society, Vol. 24, pp. 1233-1236, 2004.
- 10. K. PARK, I.H. HAN, "Effect of Al_2O_3 addition on the microstructure and electrical properties of $(Mn_{0,37}Ni_{0,3}Co_{0,33}xAl_x)O_4$ ($0 \le x \le 0.03$) NTC thermistors", Materials Science and Engineering, B119, pp. 55-60, 2005.
- WIENDARTUN, DANI GUSTAMAN SYARIF, The Effect of TiO₂ Addition on the Characteristics of CuFe₂O₄ Ceramics for NTC Thermistors, International Conference on Mathematics and Natural Sciences (ICMNS) 2006, ITB, Bandung, October 2006.

- 12. J.Z. JIANG, G.F. GOYA, H.R. RECHENBERG, J. Phys.: Condens. Mater 11, 4063 (1999).
- G.F.GOYA, H.R. RECHENBERG, J.Z JIANG, Journal of Magnetism and Magnetic Materials 218, 221 (2000).
- 14. G.F. GOYA, H.R. RECHENBERG, Journal of Applied Physics, 84 (2), 1101 (1998).
- 15. C.R. ALVES, R. AQUINO, M.H. SOUSA, H.R. RECHENBERG, G.F. GOYA, F.A. TOURINHO, J. DEPEYROT, *Journal of Metastable and Nanocrystalline Materials* 20-21, 694 (2004).
- KAMEOKA SATOSHI, TANABE TOYOKAZU, TSAI AN, Catalyst Letters, Vol. 100, No. 1-2, pp. 89-93, 2005.
- 17. W.F. SANGGUAN, Y. TERNAOKA, S. KAGAWA, *Applied Catalysis*, Part B, Vol. 16, N0.2, pp. 149-154, 1998.
- 18. R.C. WU, H.H. QU, H. HE. Y.B. YU, Applied Catalysis, Part B 48 (1), 49 (2004).
- 19. ANONYMOUS, Phase diagram for Ceramics, ASTM.
- 20 BARSOUM M., Fundamental of Ceramics, McGraw-Hill, 1997.