The Effect of SiO2 Addition on the Characteristics of CuFe2O4 Ceramics for NTC Thermistors

Wiendartun 1), Dani Gustaman Syarif 2)

1) Department of Physics, UPI, Bandung.
2) Nuclear Technology Center for Materials and Radiometry – BATAN, Bandung.
INTRODUCTION

- **THERMISTOR**: Thermally Sensitive Resistor.
- **NTC CHARACTERISTIC**:

 ![Graph showing resistance vs. temperature for Thermistor, Resistance, and Thermocouple.](image)

PRODUCT EXAMPLES:

![Images of thermistor products.](image)
Important electronic component.
- Sectors: Biomedical, aerospace, instrumentation, communications, automotive and HVACR (Heating, Ventilation, Air conditioning and Refrigeration).
 - Application: Temperature measurement, circuit compensation, suppression of in rush-current, flow rate sensor and pressure sensor.

Most, thermistors are produced from spinel ceramics based on transition metal oxides forming general formula \(\text{AB}_2\text{O}_4 \).

Need alternative (Especially based on abundant material (mineral) in Indonesia) \(\rightarrow \) \(\text{CuFe}_2\text{O}_4 \) is proposed, including that added with \(\text{SiO}_2 \).

Predicted that the \(\text{SiO}_2 \) addition can improve the characteristics of the \(\text{CuFe}_2\text{O}_4 \) ceramic for NTC thermistors.
EXPERIMENT

MIXING

CuO Fe₃O₄ SiO₂

CALCINATION

800°C/2h

CRUSHING

SIEVING

PRESSING

3,9 ton/cm²

SINTERING

1100°C/2h

CHARACTERIZATION

-XRD
-Electrical
-Microstructural

Sintering Furnace

XRD

Optical Microscope
RESULTS (XRD)

XRD profiles of CuFe$_2$O$_4$ based-ceramics.
RESULTS (Microstructure)

Microstructure of the CuFe$_2$O$_4$ based-ceramics.

- 0 w/o SiO$_2$
- 0.25 w/o SiO$_2$
- 0.75 w/o SiO$_2$

50 μm
RESULTS
(Electrical Characteristics)

Ln resistivity (ρ) vs 1/T of SiO₂ added- CuFe₂O₄ ceramics.
RESULTS

(Electrical Characteristics)

<table>
<thead>
<tr>
<th>No.</th>
<th>Additive of SiO(_2) (w/o)</th>
<th>B ((^\circ)K)</th>
<th>(\alpha) (%/(^\circ)K)</th>
<th>(\rho_{RT}) (Ohm-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.00</td>
<td>2548</td>
<td>2.83</td>
<td>291</td>
</tr>
<tr>
<td>2.</td>
<td>0.25</td>
<td>2358</td>
<td>2.62</td>
<td>1079</td>
</tr>
<tr>
<td>3.</td>
<td>0.50</td>
<td>2884</td>
<td>3.20</td>
<td>4788</td>
</tr>
<tr>
<td>4.</td>
<td>0.75</td>
<td>3308</td>
<td>3.68</td>
<td>9400</td>
</tr>
</tbody>
</table>

Market requirement for B is \(\geq 2000\) °K and \(\alpha\) is \(\geq 2.2\) \%/°K\(^\circ\)K\(^\circ\)K[7], market requirement for \(\rho_{RT} = 10\) ohm.cm -1 Mohm.cm [4].
CONCLUSIONS

- The CuFe$_2$O$_4$ ceramics can be applied as NTC Thermistor.
- The grain size of the CuFe$_2$O$_4$ ceramics tends to decrease by addition of SiO$_2$.
- The addition of SiO$_2$ increased the room temperature resistivity (ρ_{RT}) and the thermistor constant (B) of the CuFe$_2$O$_4$ ceramics due to the segregated SiO$_2$.
- The value of (ρ_{RT}) and (B) of the CuFe$_2$O$_4$ ceramics made in this work fits the market requirement.
ACKNOWLEDGMENT

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under hibah Pekerti program with contract No.014/SPP/PP/DP2M/II/2006