The effect of SiO₂ addition on the characteristics of CuFe2O4 Ceramics for NTC Thermistor

Wiendartun¹⁾, Dani Gustaman Syarif²

¹⁾ Department of Physics, UPI, Bandung.

²⁾ Nuclear Technology Center for Materials and Radiometry – BATAN, Bandung. Telp. 62-22-2503997, Fax. 62-22-2504081, email: danigustas@batan-bdg.go.id

Abstract.

The effect of SiO₂ addition on the characteristics of CuFe₂O₄ ceramics for NTC thermistors has been studied. The ceramics were produced by pressing a homogeneous mixture of CuO, Fe₃O₄ and SiO₂ (0-0.75 w/o) powders in appropriate proportions to produce CuFe₂O₄ based ceramics and sintering the pressed powder at 1100°C for 2 hours in air. Electrical characterization was done by measuring electrical resistivity of the ceramics at various temperatures (25°C-100°C). Microstructure and structural analyses were also carried out by using optical microscopy and x-ray diffraction (XRD), respectively. The XRD analyses showed that the CuFe₂O₄ and SiO₂ added-CuFe₂O₄ ceramics have crystal structure of cubic spinel. The presence of second phase could not be identified from the XRD analyses. According to the electrical data, it was known that the SiO₂ addition increased the thermistor constant (B) and the room temperature electrical resistivity (ρ_{RT}). The value of B and ρ_{RT} of the produced CuFe₂O₄ ceramics namely B = 2548-3308°K and ρ_{RT} = 291-9400 ohm's, fitted market requirement.

Key words: Thermistor, NTC, CuFe₂O₄, SiO₂.

I. INTRODUCTION

NTC thermistors are widely used in the world due to their potential use for many applications such as temperature measurement, circuit compensation, suppression of in rushcurrent, flow rate sensor and pressure sensor in many sectors [1]. It is well known that most NTC thermistors are produced from spinel ceramics based on transition metal oxides with general formula of AB_2O_4 where A is metal ion in tetrahedral position and B is metal ions in octahedral position [2-10]. Many studies have been done to improve the characteristics of the spinel based-NTC thermistors [6, 7, 11]. However, the study on the effect of SiO₂ addition on the characteristics of CuFe₂O₄ spinel ceramics for NTC thermistor has not been reported yet.

Generally, the $CuFe_2O_4$ ceramics used as soft magnet [12-15] as well as catalyst [16-18], however, potentially, the $CuFe_2O_4$ ceramics have capability of being NTC thermistors due to its semi conductive property. According to $CuO-Fe_2O_3$ phase diagram [19], there is an area where the ceramic composing of CuO and Fe₂O₃ heated at 1100°C will have a microstructure containing liquid phase. In room temperature, the liquid phase may be a boundary material. This boundary material theoretically will influence the characteristics of the ceramics, especially the electrical characteristics. Since an additive such as SiO₂ is added, the characteristics of the CuFe₂O₄ may change because two conditions may happen. The conditions are, the first, the SiO₂ dissolves in the CuFe₂O₄ by substituting Cu ions or Fe ions, the second, the SiO₂ does not dissolve but segregated at grain boundaries and it may react with the liquid phase that originally exists.

Since the first condition happens, the $CuFe_2O_4$ ceramics may have a lower electrical resistivity when the substitution of Fe^{3+} and /or Cu^{2+} creating free electron in the conduction band. Meanwhile, since the second one happens, the electrical resistivity may be higher because the segregated SiO_2 may change the microstructure. In our previous study [12], it was known that TiO_2 tend to increase the room temperature resistivity and thermistor constant. This work is to know the effect of SiO_2 addition on the characteristics of the $CuFe_2O_4$ ceramics for NTC thermistors, especially the electrical characteristic based on the above mentioned hypothesis. The results were compared to our previous study.

II. METHODOLOGY

Powders of CuO, Fe₃O₄ and SiO₂ were weighed in appropriate proportions to fabricate SiO₂ added-CuFe₂O₄ ceramics where the SiO₂ were 0, 0.25, 0,5 and 0.75 weight %. The mixture of powders was calcined at 800°C for 2 hours. After calcination, the powder was crushed and sieved with a siever of < 38 μ m. The sieved powder was then pressed with pressure of 4 ton/cm² into green pellets. The green pellets were sintered at 1100°C for 2 hours in air.

The crystal structure of the sintered pellets was analyzed with x-ray diffraction (XRD) using K α radiation at 40KV and 25mA. After grinding, polishing, etching the pellets, the microstructure of the pellets was investigated by an optical microscope. The opposite-side surfaces of the sintered pellets were coated with Ag paste. After the paste was dried at room temperature, the Ag coated-pellets were heated at 750°C for 10 minutes. The resistivity was measured at various temperatures from 25 to 100°C in steps of 5°C.

III. RESULTS

Fig.1 shows appearance of typical SiO₂ Added-CuF₂O₄ ceramics. The ceramics are visually good. Fig.2, Fig.3, and Fig.4 show the XRD profiles of CuFe₂O₄ ceramic added with 0, 0.25 and 0.75 weight % SiO₂, respectively. As shown in the figure 2 - 4, the profiles are similar. The XRD profiles show that the structure of the ceramics is cubic spinel after being compared to the XRD standard profile of CuFe₂O₄ from JCPDS No. 22-1012. No peaks from second phases observed. It may be due to the small concentration of SiO₂ added which smaller than the precision limit of the x-ray diffractometer used. The added SiO₂ may be dissolved or not. It cannot be concluded from the XRD profiles in this works. The microstructure and electrical data may be used to evaluate whether the SiO₂ added was dissolved or not.

Fig. 1. Visual appearance of typical SiO₂ Added-CuF₂O₄ ceramic.

Fig. 2. XRD profile of CuFe₂O₄ ceramic.

Fig. 3. XRD profile of 0.25 w/o SiO₂ added-CuF₂O₄ ceramic.

Fig. 4. XRD profile of $0.50 \text{ w/o} \text{ SiO}_2$ added-CuF₂O₄ ceramic.

Fig. 5. XRD profile of 0.75 w/o SiO_2 added-CuF₂O₄ ceramic.

Fig.6, Fig.7 and Fig. 8 are microstructures of the $CuFe_2O_4$ ceramics added with 0, 0.25, and 0.75 weight % SiO₂, respectively.

Fig. 6. Microstructure of the CuFe₂O₄ ceramic.

Fig. 7. Microstructure of the 0.25 w% SiO_2 added-CuFe₂O₄ ceramic.

Fig. 8. Microstructure of the 0.75 w% SiO₂ added-CuFe₂O₄ ceramic.

From Fig. 6-8, it is clearly shown that the addition of SiO_2 decreases the size of grains. The decrease of the grain size is due to the segregation of the SiO_2 at grain boundaries. Since the SiO_2 dissolved in CuFe₂O₄ the grains should become larger when Si^{4+} creates iron vacancy following reactions (1) and (2):

$$3SiO_2 = 3Si^{1+}_{Fe} + 6O_{(O)} + V^{3-}_{Fe} \qquad (1)$$

where, $Si_{Fe}^{1+} = Ion Si^{4+}$ occupies Fe sublattice, $O_{(O)} = Oxygen$ ion occupies oxygen sublattice and $V_{Fe}^{3-} = Iron$ vacancy.

$$3SiO_2 = 3Si^{2+}_{Cu} + 6O_{(O)} + 2V^{3-}_{Fe} \qquad (2)$$

where, Si_{Cu}^{2+} = Ion Si_{Cu}^{4+} occupies Cu sublattice, $O_{(O)}$ = Oxygen ion occupies oxygen sublattice and V_{Fe}^{3-} = Iron vacancy.

Since the accomodation of Si^{4+} follows reaction (3) and (4), it will be no effect on the grain growth.

$$2SiO_2 = 2Si^{1+}_{Fe} + 3O_{(O)} + \frac{1}{2}O_2(gas) + 2e \qquad \dots \qquad (3)$$

where, $Si_{Fe}^{1+} = Ion Si^{4+}$ occupies Fe sublattice, $O_{(O)} = Oxygen$ ion occupies oxygen sublattice, $\frac{1}{2}O_2(gas) = Released$ oxygen and e = Released electron.

$$SiO_2 = Si^{2+}_{Cu} + O_{(O)} + \frac{1}{2}O_2 (gas) + 2e$$
(4)

where, $\text{Si}^{2+}_{Cu} = \text{Ion Si}^{4+}$ occupies Cu sublattice, $O_{(O)} = \text{Oxygen ion occupies oxygen sublattice,}$ $\frac{1}{2}O_2(\text{gas}) = \text{Released oxygen and } e = \text{Released electron.}$

Fig.9. Ln resistivity (ρ) vs 1/T of SiO₂ added-CuFe₂O₄ ceramics.

The electrical data of Fig. 9 shows that the electrical characteristics of the ceramics follow the NTC tendency expressed by eq. 6. As shown in Table 1, the addition of SiO₂ increases the room temperature resistivity (ρ_{RT}) and thermistor constant (B). Compared to the (B) value for market requirement where $B \ge 2000^{\circ}$ K, the value of B for our ceramics is larger and it means better.

$$\rho = \rho_0 \exp(B/T) \dots (5)$$

where, ρ = Electrical resistivity, ρ_0 = Electrical resistivity at infinite temperature, B is the thermistor constant and T is the temperature in Kelvin.

No.	Additive	В	α	ρ_{RT}
	$SiO_2(w/o)$	(°K)	(%/°K)	(ohm-cm)
1.	0	2548	2,83	291
2.	0,25	2358	2,62	1079
3.	0,50	2884	3,20	4788
4.	0,75	3308	3,68	9400

Table 1. Electrical characteristics of the SiO₂ added-CuFe₂O₄ ceramics.

IV. DISCUSSION

The decrease of the grain size is caused by the segregation of the added SiO_2 . The segregated SiO_2 inhibits the grain growth during sintering. This data confirms that the added- SiO_2 is not dissolved in the CuFe₂O₄ ceramics which could not be concluded from the XRD data.

The change of the electrical characteristics is controlled by the change of the microstructure due to the SiO₂ addition. Since the SiO₂ dissolved in CuFe₂O₄ by substituting Cu and/or Fe following eq. (3) and (4), the room temperature resistivity (ρ_{RT}) and thermistor constant (B) should decrease. The increase (ρ_{RT}) and (B) as shown by our data indicates that the added SiO₂ is not dissolved and tends to segregate at the grain boundaries.

The other reactions following eq. (1) and (2) may also happen when the added SiO_2 dissolved in $CuFe_2O_4$ by substituting Cu and/or Fe. The possibility of the reactions of (1) – (4) to occur can be evaluated using data of ionic radii. The ionic radius of Cu^{2+} , Fe^{3+} and Si^{4+} is shown in Table 2.

No.	lon	Radius (pm)
1.	Cu ²⁺	87
2.	Fe ³⁺	69
3.	Si ⁴⁺	54
4.	Ti ⁴⁺	74.5

Table 2. Ionic radius of Cu^{2+} , Fe^{3+} , Si^{4+} and Ti^{4+} with 6 coordination number [20].

The ionic radius difference between Si^{4+} and Cu^{2+} is too large, so the possibility of the reaction (3) and (5) to occur is small. The ionic radius difference between Si^{4+} and Fe^{3+} is smaller than that between Si^{4+} and Cu^{2+} , however, this difference is still large. So, the possibility of the reaction (2) and (4) to occur is also small. The microstructure data showed that the SiO₂ addition decreased the grain size. So, therefore it can be concluded that the reaction of eq. (1) - (4) do not occur. As mentioned before, the added SiO₂ is segregated at the grain boundaries and the electrical characteristic is controlled by the microstructure.

Compared to the previous study about the effect of TiO_2 on electrical characteristic of $CuFe_2O_4$ [12], there is a significant difference in electrical resitivity. The room temperature

resistivity of the SiO2 added-CuFe₂O₄ ceramics is larger than that of the TiO₂ added-CuFe₂O₄ ones [12]. It may be due to the difference effect of the different additive. There is a high possibility that a part of added TiO₂ was dissolved in the CuFe₂O₄ ceramics, so that the resistivity of the TiO₂ added-CuFe₂O₄ lower than that of the SiO₂-added CuFe₂O₄ ceramics in the current work. Considering the ionic radius of the Ti⁴⁺ ion i.e. 74.5 pm [20] which is close to that of Fe³⁺ ion, it is possible that TiO₂ dissolved in CuFe₂O₄ where the Ti⁴⁺ substitutes the Fe³⁺ decreasing the resistivity of the ceramics.

V. CONCLUSION

The grain size of the CuFe₂O₄ ceramics decreases by addition of SiO₂ because the added SiO₂ segregated at grain boundaries and inhibited grain growth during sintering. The addition of SiO₂ increased the room temperature resistivity (ρ_{RT}) and the thermistor constant (B) of the CuFe₂O₄ ceramics through changing the microstructure. The value of (ρ_{RT}) and (B) of the CuFe₂O₄ ceramics made in this work fits the market requirement.

ACKNOWLEGMENT

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under hibah PEKERTI program with contract No. 014/SPP/PP/DP2M/II/2006.

REFERENCES

- [1]. BetaTHERM Sensors [on line]. Available: http://www.betatherm.com.
- [2]. Eun Sang Na, Un Gyu paik, Sung Churl Choi, "The effect of a sintered microstructure on the electrical properties of a Mn-Co-Ni-O thermistor", Journal of Ceramic Processing Research, Vol.2, No. 1, pp 31-34, 2001.
- [3]. Yoshihiro Matsuo, Takuoki Hata, Takayuki Kuroda, "Oxide thermistor composition", US Patent 4,324,702, April 13, 1982
- [4]. Hyung J. Jung, Sang O. Yoon, Ki Y. Hong, Jeon K. Lee, "Metal oxide group thermistor material", US Patent 5,246,628, September 21, 1993.
- [5]. Kazuyuki Hamada, Hiroshi Oda, "Thermistor composition", US Patent 6,270,693, August 7, 2001.

- [6]. K. Park, "Microstructure and electrical properties of $Ni_{1.0Mn2-x}Zr_xO_4$ ($0 \le x \le 1.0$) negative temperature coefficient thermistors", Materials Science and Engineering, B104, pp. 9-14, 2003.
- [7]. K. Park, D.Y. Bang, "Electrical properties of Ni-Mn-C0-(Fe) oxide thick film NTC thermistors", Journal of Materials Science: Materials in Electronics, Vol.14, pp. 81-87, 2003.
- [8]. Shopie Gulemet Fritsch, Jaouad Salmi, Joseph Sarrias, Abel Rousset, Shopie Schuurman, Andre Lannoo, "Mechanical properties of nickel manganites-based cermics used as negative temperature coefficient thermistors", Materials Research Bulletin, Vol. 39, pp. 1957-1965, 2004.
- [9]. R. Schmidt, A. Basu, A.W. Brinkman, , "Production of NTCR thermistor devices based on NiMn₂O_{4+δ}", Journal of The European Ceramic Society, Vol. 24, pp. 1233-1236, 2004.
- [10]. K. Park, I.H. Han, "Effect of Al_2O_3 addition on the microstructure and electrical properties of $(Mn_{0,37}Ni_{0,3}Co_{0,33}-_xAl_x)O_4$ ($0 \le x \le 0.03$) NTC thermistors", Materials Science and Engineering, B119, pp. 55-60, 2005.
- [11]. The Effect of TiO₂ Addition on the Characteristics of CuFe₂O₄ Ceramics for NTC Thermistors, International Conference on Mathematics and Natural Sciences (ICMNS) 2006, ITB, Bandung, October 2006.
- [12]. J.Z. Jiang, G.F. Goya, H.R. Rechenberg, J. Phys.: Condens. Mater 11, 4063 (1999).
- [13]. G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Journal of Magnetism and Magnetic Materials 218, 221 (2000).
- [14]. G.F. Goya, H.R. Rechenberg, Journal of Applied Physics 84 (2), 1101 (1998).
- [15]. C.R. Alves, R. Aquino, M.H. Sousa, H.R. Rechenberg, G.F. Goya, F.A. Tourinho, J. Depeyrot, Journal of Metastable and Nanocrystalline Materials 20-21, 694 (2004).
- [16]. Kameoka Satoshi, Tanabe Toyokazu, Tsai An, Catalyst Letters, Vol. 100, No. 1-2, pp. 89-93, 2005.
- [17]. W.F. Shangguan, Y. Ternaoka, S. Kagawa, Applied catalysis Part B, Vol. 16, No.2, pp. 149-154, 1998.
- [18]. R.C. Wu, H.H. Qu, H. He. Y.B. Yu, Applied Catalysis Part B 48 (1), 49 (2004).
- [19]. Anonymous, Phase diagram for Ceramists, ASTM.
- [20] M. Barsoum, Fundamental of Ceramics, McGraw-Hill, 1997.