Electrical Characteristics CuFe$_2$O$_4$ Ceramics With and Without Al$_2$O$_3$ for Negative Thermal Coefficient (NTC) Thermistor

Wiendartun1, Dani Gustaman Syari2, Arief Permadi1

1 Jurusan Fisika FMIPA UPI; Jl.Dr Setiabudhi 229 Bandung, email: wien@upi.edu
2 PTNBR BATAN, Jl.Tamansari 71 Bandung; email: danigusta@yahoo.com

INTRODUCTION

Thermistor → Thermally Sensitive Resistor.

NTC CHARACTERISTIC

PRODUCT EXAMPLES

- Specialized Thermistor
- Current Limiter Thermistor
- Incubator

APPLICATIONS

- Biomedical, aerospace, instrumentation, communications, automotive
- HVACR (Heating, Ventilation, Air conditioning and Refrigeration)
- Temperature sensor, electric current limiter, flowrate meter and pressure sensor.
- Most, thermistors are produced from spinel ceramics based on transition metal oxides forming general formula AB_2O_4.
- Predicted that the Al_2O_3 addition can improve the characteristics of the CuFe$_2$O$_4$ ceramic for NTC thermistors.

EXPERIMENT

![çocuk](image)

RESULT (XRD)

- XRD profiles of CuFe$_2$O$_4$ based-ceramics

RESULT (ELECTRICAL CHARACTERISTIC)

<table>
<thead>
<tr>
<th>Additive of Al_2O_3 (mol %)</th>
<th>α (K$^{-1}$)</th>
<th>φ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2862</td>
<td>3.22</td>
</tr>
<tr>
<td>1</td>
<td>3208</td>
<td>3.61</td>
</tr>
<tr>
<td>5</td>
<td>3958</td>
<td>4.46</td>
</tr>
</tbody>
</table>

The relation between Electrical Resistivity and $1/T$.

CONCLUSION

- All CuFe$_2$O$_4$ base-ceramic crystallized in tetragonal structure.
- Thermistor constant (B) and sensitivity (a) of the CuFe$_2$O$_4$ base-ceramics increase with the increase of Al_2O_3 concentration.
- This means that the addition of Al_2O_3 can be used as a controlling parameter.
- However, the addition of Al_2O_3 decreases the electrical stability of the CuFe$_2$O$_4$ base-ceramics. Only sample without Al_2O_3 and that added with 1 mole % Al_2O_3 fit the electrical stability condition.
- Heating at 150°C for 200 hours can be used to make CuFe$_2$O$_4$ base-ceramic stably electrically.

ACKNOWLEDGMENT

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under Hibah PEKERTI program with contract No.034/SP.017/P.2026. April 24, 2006.
INTRODUCTION

NTC CHARACTERISTIC
- Thermally Sensitive Resistor.

PRODUCT EXAMPLES

APPLICATIONS
- Computer
- HVACR (Heating, Ventilation, Air conditioning and Refrigeration)
- Pressure sensor
- Flowrate meter

IMPORTANT ELECTRONIC COMPONENT

ELECTRICAL CHARACTERISTIC

REFERENCE

CONCLUSION

RESULT (ELECTRICAL CHARACTERISTIC)

RESULT (XRD)

ACKNOWLEDGMENT

REFERENCES

SAMPLE COMPOSITION IN MOLE % TABLE

HEAT TREATMENT
- 800°C 2h
- 1100°C 2h

CHARACTERIZATION
- Optical Microscope
- XRD

HEATING
- 100°C

EXPERIMENT
- Specialize Thermistor
- Current limiter thermistor

APPLICATION

PRODUCT EXAMPLES

APPLICATIONS

RESULT (ELECTRICAL CHARACTERISTIC)

RESULT (XRD)

ACKNOWLEDGMENT

REFERENCES

SAMPLE COMPOSITION IN MOLE % TABLE
INTRODUCTION

Biomedical, aerospace, instrumentation, communications, automotive:

THERMISTOR→ Thermally Sensitive Resistor.

NTC CHARACTERISTIC

PRODUCT EXAMPLES

Current limiter thermistor

Specialize Thermistor

APPLICATIONS

IMPORTANT ELECTRONIC COMPONENT

- Sectors: Biomedical, aerospace, instrumentation, communications, automotive and HVACR (Heating, Ventilation, Air conditioning and Refrigeration).
- Application: Temperature sensor, electric current limiter, flowrate meter and pressure sensor.
- Most, thermistors are produced from spinel ceramics based on transition metal oxides forming general formula $A_B^{2+}O_4$.
- Predicted that the $A_{2}O_{3}$ addition can improve the characteristics of the $CuFe_2O_4$ ceramic for NTC thermistors.

EXPERIMENT

CuO

Fe_2O_3

SiO$_2$

MIXING

$800^\circ C / 2 h$

CALCINATION

CRUSHING

$3, 9$ ton/Cm2

PRESSING

$1100^\circ C / 2 h$

SINTERING

HEAT TREATMENT

$T(\text{OC})$

$500^\circ C$

25' 30'

(minute)

SAMPLE COMPOSITION IN MOLE % TABLE

<table>
<thead>
<tr>
<th>No.</th>
<th>CuO</th>
<th>Fe_2O_3</th>
<th>Al_2O_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>40</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>40</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>40</td>
<td>55</td>
<td>5</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTIC

$\bullet R = R_o \exp(B/T)$

$\bullet Ea = B.k$

$\bullet \alpha = -B/T^2$

$R = $ Thermistor resistance

$R_o = $ Resistance at the infinite temperature

$B = $ Thermistor constant

$T = $ Temperature of thermistor

$E_a = $ Activation energy

$k = $ The Boltzmann constant

$\alpha = $ Sensitivity of thermistor

RESULT (XRD)

RESULT (ELECTRICAL CHARACTERISTIC)

<table>
<thead>
<tr>
<th>No.</th>
<th>Additive of Al_2O_3 (mol %)</th>
<th>B (%K)</th>
<th>α (%/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>2862</td>
<td>3.22</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>3208</td>
<td>3.61</td>
</tr>
<tr>
<td>3.</td>
<td>5</td>
<td>3958</td>
<td>4.46</td>
</tr>
</tbody>
</table>

CONCLUSION

- All $CuFe_2O_4$ base-ceramic crystallized in tetragonal structure.
- Thermistor constant (B) and sensitivity (α) of the $CuFe_2O_4$ base-ceramics increase with the increase of Al_2O_3 concentration.
- This means that the addition of Al_2O_3 can be used as a controlling parameter.
- However, the addition of Al_2O_3 decreases the electrical stability of the $CuFe_2O_4$ base-ceramics. Only sample without Al_2O_3 and that added with 1 mole $%Al_2O_3$ fit the electrical stability condition.
- Heating at $150^\circ C$ for 200 hours can be used to make $CuFe_2O_4$ base-ceramic stable electrically.

REFERENCES

- E.S. Na, S.C. Park, I.C. Choi, "The effect of a sintered microstructure on the electrical properties of a Mn-Co-Ni-O based-ceramics", Ceramics with and without Fe_2O_3 base-ceramic. Only sample without Al_2O_3 and that added with 1 mole $%Al_2O_3$ fit the electrical stability condition.
- Heating at $150^\circ C$ for 200 hours can be used to make $CuFe_2O_4$ base-ceramic stable electrically.

ACKNOWLEDGEMENT

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under Hibah PEKERTI program with contract No.024/SIP/PT/2005/0.4. April 24, 2006.