Effect of Heat Treatment on the Characteristics of SiO2 Added-ZnFe2O4 Ceramics for NTC Thermistors

Wiendartun ¹), Dani Gustaman Syarif ²)

 Department of Physics, UPI, Bandung.
Nuclear Technology Center for Materials and Radiometry – BATAN, Bandung.

INTRODUCTION

THERMISTOR→ Thermally Sensitive Resistor. NTC CHARACTERISTIC PRODUCT EXAMPLES APPLICATIONS

R vs T- THERMISTOR

Current limiter thermistor

Specialize Thermistor

Incubator

Computer

INTRODUCTION (Continuation)

Important electronic component.

- Sectors: Biomedical, aerospace, instrumentation, communications, automotive and HVACR (Heating, Ventilation, Air conditioning and Refrigeration).

-Application : Temperature measurement, circuit compensation, suppression of in rush-current, flow rate sensor and pressure sensor.

- Most, thermistors are produced from spinel ceramics based on transition metal oxides forming general formula AB2O4.
- Need alternative {Expecially based on abundant material [yarosit mineral(Fe3O4)] in Indonesia} → ZnFe2O4 is proposed, including that added with SiO2.
- Predicted that the heat treatment effect can improve the characteristics of the ZnFe2O4 ceramic for NTC thermistors.

EXPERIMENT

Sintering Furnace

Optical Microscope

CHARACTERIZATION -XRD -Electrical -Microstructural

XRD

Heat Treatment

1000C/10'/10C/2C 1000C/10'/10C/ 10C 1000C/10'/10C/quenching

Visual Appearance of typical SiO2 Added-ZnFe204

RESULTS (XRD Profile)

0.5 w/o SiO2 sintered at 1200 C/2h/6 C/6 C

0 w/o SiO2 sintered at 1200 C/2h/6 C/6 C

XRD profiles of ZnFe2O4 based-ceramics.

RESULTS (Microstructure)

0 w/o SiO2 sintered at 1200 C/2h/6 C/6 C

0.5 w/o SiO2 sintered at 1200 C/2h/6 C/6 C

50 μm

Microstructure of the ZnFe₂O₄ based-ceramics.

Electrical Characteristic $R = R_0$. Exp.(B/T) Ea = B.k $\alpha = - B/T^2$

R = Thermistor resistance R_0 = Resistance at the infinite temperature B = Thermistor constant T = Temperature of thermistor Ea = Activation energy k = The Boltzmann constant α = Sensitivity of thermistor

RESULTS (Electrical Characteristics)

Ln resistivity (ρ) vs 1/*T* of SiO₂ added- ZnFe₂O₄ ceramics.

RESULTS (Electrical Characteristics)

No.	Heat treatment	B (^{0K)}	Ea (eV)	α (%/ ^{0K)}	ρ _{RT} (kOhm- cm)
1	Sintered at 1200°C/2hours/6C/6C)		-	-	98
	(Initial)	-			
2	1000 C/10min/ 10C/ 10 C	3978	0.34	4.42	38
3	1000 C/10min /10C/ 2 C	3705	0.32	4.12	154
4	1000C/10min/10C/quenching	3014	0.26	3.35	12

Tabel of The value of the thermistor constant (B), sensitivity (α) and room temperature resistivity (ρ_{RT}) of 0.5 weight % SiO₂ added-ZnFe2O4 ceramics.

Market requirement for B is \geq 2000 °K and α is \geq 2.2 %/°K[7], and for ρ_{RT} = 10 ohm.cm -1 Mohm.cm [4].

CONCLUSIONS

- The grain size of the ZnFe2O4 ceramics tends to decrease by addition of SiO2.
- The Heat Treatment can be adopted in thermistor fabrication to control the electrical characteristics of the thermistor.
- The values of the thermistor constant (B) and the room temperature resistivity (p_{RT}) of the ZnFe2O4 ceramics made in this work fits the market requirement.

THANK YOU

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under Hibah Pekerti program with contract No.032/SP2H/PP/DP2M/III/2007