7

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (*BOUND STATES*) UNTUK TIGA DIMENSI

A. Atom Hidrogen (Masalah Gaya Sentral)

1. Hamiltonian dan Nilai Eigen

$$\hat{H} = \frac{\hat{p}r}{2m} + \frac{\hat{L}^2}{2\mu r^2} - \frac{ze^2}{r}.$$
 (7.1)

Persamaan Schrodinger yang berkaitan dengan sistem berupa hidrogenik atom itu ialah:

$$\left(\frac{\stackrel{\circ}{p}\frac{z}{r}}{2m} + \frac{\stackrel{\circ}{L}^{2}}{2m} - \frac{ze^{2}}{r}\right)\varphi = E\varphi \tag{7.2}$$

atau

$$\left(\frac{\stackrel{?}{p}r}{2m} + \frac{\stackrel{?}{L}^{2}}{2m} - \frac{ze^{2}}{r}\right)\varphi = -|E|\varphi$$
 (7.3)

 $\varphi(r.\theta.\phi) = R_{(r)} Y_{\ell}^{m}(\theta.\phi) \tag{7.4}$

atau anda bisa juga menggunakan persamaan (6.36) operator:

$$\hat{p} r = -i\hbar \frac{1}{r} \frac{\partial}{\partial r} r$$

$$\hat{p}_{r}^{2} = \left(-i\hbar \frac{1}{r} \frac{\partial}{\partial r} r \right) \left(-i\hbar \frac{1}{r} \frac{\partial}{\partial r} r \right)$$

$$\hat{p}_{r}^{2} = \hbar^{2} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r$$
(7.5)

dan menggunakan persamaan nilai eigen untuk operator $\stackrel{\circ}{L}^2$:

$$\hat{L}^{2} \varphi = \hbar^{2} \ell \left(+ 1 \right) g. \tag{7.6}$$

Setelah kita lakukan tahap-tahap pengerjaan diatas maka akan kita peroleh persamaan radialnya adalah

$$\left\{ \frac{-\hbar^2}{2\mu} \left(\frac{1}{r} \frac{d^2}{dr^2} r \right) + \frac{\hbar^2 \ell \, \P + 1}{2\mu r^2} - \frac{ze^2}{r} + |E| \right\} R_{(r)} = 0$$
(7.7)

atau

$$\left[-\frac{d^2}{dr^2}r + \frac{r\ell \, \P + 1}{r^2} - \frac{2\mu \mathbb{Z}e^2 r}{\hbar^2 r} + \frac{2\mu |E|r}{\hbar^2} \right] R \, \P = 0$$
 (7.8)

Misalkan:

$$\bigcup = r \ R \tag{7.9}$$

maka:

$$\left[-\frac{d^2}{dr^2} + \frac{\ell \, \P + 1}{r^2} - \frac{2\mu Z e^2}{\hbar^2 r} + \frac{2\mu |E|}{\hbar^2} \right] \bigcup = 0.$$
 (7.10)

Pada persamaan (6.50) kita sudah menggunakan nilai E sebagai berikut:

$$|E| = \frac{\hbar^2 k^2}{2\mu}.$$

Misalkan p = 2 k r atau r = $\frac{1}{2k}$ p, sehingga:

$$r^2 = \frac{1}{4k^2} p^2 \tag{7.11}$$

$$dr^2 = \frac{1}{4k^2} d p^2, (7.12)$$

substitusikan ke dalam persamaan (6.10) maka diperoleh:

$$\left[-4k^2 \frac{d^2}{dp^2} + \frac{4k^2\ell(\ell+1)}{p^2} - \frac{4k\mu ze^2}{\hbar^2 p} + k^2 \right] \cup = 0$$

atau

$$\left\{ \frac{d^2}{dp^2} - \frac{\ell \ell + 1}{p^2} + \frac{\mu z e^2}{k \hbar^2 p} - \frac{1}{4} \right\} \cup = 0$$
 (7.13)

dalam modul fisika modern sudah didefinisikan bahwa:

$$\frac{\hbar^2}{\mu e^2} = a_{o,} \text{ yaitu radius Bohr,}$$
 (7.14)

$$R = \frac{\hbar^2}{2\mu a_o^2} \text{ yaitu konstanta Rydberg,}$$
 (7.15)

dan

$$\lambda^2 = \left(\frac{z}{k a_0}\right)^2 = \frac{Z^2 R}{|E|} \tag{7.16}$$

persamaan (7.13) dinyatakan dalam term a_0 , R dan λ menjadi sebagai berikut

$$\frac{d^2 \cup}{d p^2} - \frac{\ell \cdot \cdot \cdot + 1}{p^2} \cup + \left(\frac{\lambda}{p} - \frac{1}{4}\right) \cup = 0. \tag{7.17}$$

Persamaan (7.17) dapat dianalisa sebagai berikut :

1. Untuk harga p besar maka persamaan direduksi menjadi

$$\frac{d^2 \cup}{d p^2} - \frac{1}{4} \cup = 0 \tag{7.18}$$

dan solusinya adalah

$$\cup = A e^{\rho/2} + Be^{-\rho/2}. \tag{7.19}$$

Solusi yang kita cari harus berupa fungsi berkelakuan baik yaitu

$$p \to - \tag{7.20}$$

maka A = 0. Dengan demikian solusinya:

$$\cup = Be^{-p/2} \tag{7.21}$$

2. Untuk harga ρ berada di sekitar titik pusat koordinat (orogin) persamaan (7.17) di reduksi menjadi

$$\frac{d^2 \cup}{d \rho^2} - \frac{\ell \cdot (+1)}{\rho^2} \cup = 0 \tag{7.22}$$

solusi persamaan (7.22) dapat dilakukan dengan mensubstitusikan fungsi coba $\cup = \rho^a$ maka diperoleh:

$$\bigcup = A\rho^{-\ell} + B\rho^{\ell+1} \tag{7.23}$$

bila \cup berada di pusat koordinat maka A = 0, jadi

$$\cup \operatorname{Be}^{\ell+1} \operatorname{untuk} \rho \to 0 \tag{7.24}$$

Dengan dua bentuk asimtot tersebut maka solusi persamaan (7.17) dapat dijabarkan dalam bentuk polinomial. Solusinya diungkapkan dalam

$$\bigcup \mathbf{Q} = e^{-\rho/2} \rho^{\ell+1} F \mathbf{Q} \qquad (7.25)$$

dengan:

$$F \bigodot \ni \sum_{i=0}^{\infty} C_i \rho_i . \tag{7.26}$$

Substisusi persamaan (7.25) ke dalam persamaan (7.17) maka diperoleh:

$$\left[\rho \frac{d^2}{d\rho^2} + \mathbf{Q}\ell + 2 - \rho \frac{d}{d\rho} - \mathbf{Q} + 1 - \lambda\right] F \mathbf{Q} = 0$$
 (7.27)

Untuk suatu harga bilangan kuantum orbital ℓ tertentu persamaan (7.27) tak lain adalah persamaan nilai eigen dengan nilai eigen λ

Berikutnya kita substitusikan persamaan (7.26) dan turunannya ke dalam persamaan (7.27):

$$F \oint \oint \sum_{i=0}^{\infty} C_i \rho_i$$

$$= C_0 + C_1 \rho + C_2 \rho^2 + C_3 \rho^3 + C_4 \rho^4 + C_5 \rho^5 + \dots C_i \rho^6$$

$$\frac{dF(\rho)}{d\rho} = C_1 + 2C_2 \rho + 3C_3 \rho^2 + 4C_4 \rho^3 + 5C_5 \rho^4 + \dots$$

$$\frac{d^2 F(\rho)}{d\rho^2} = 2C_2 + 6C_3 \rho + 12C_4 \rho^2 + 20C_5 \rho^3 + \dots$$

maka diperoleh:

$$\begin{pmatrix} C_2 \rho + 6C_3 \rho^2 + 12C_4 \rho^3 + 20C_5 \rho^4 + \dots \end{pmatrix}$$

$$(2\ell + 2\rho) \begin{pmatrix} C_1 + 2C_2 \rho + 3C_3 \rho^2 + 4C_4 \rho^3 + \dots \end{pmatrix} , (7.28)$$

$$(\ell + 1 - \lambda) \begin{pmatrix} C_0 + C_1 \rho + C_2 \rho^2 + C_3 \rho^3 + C_4 \rho^4 + \dots \end{pmatrix} = 0$$

selanjutnya kita lakukan pengelompokkan dalam variabel ρ dengan orde yang sama:

$$\mathbf{Q}\ell + 2\mathbf{G}_{1} - \mathbf{Q} + 1 - \lambda \mathbf{G}_{0} \mathbf{p}^{0} + \mathbf{Q}_{2} - C_{1} - \mathbf{Q} + 1 + \lambda \mathbf{G}_{1} - \mathbf{Q}\ell + 2\mathbf{G}_{2} \mathbf{p} + 6C_{3} + \mathbf{Q}\ell + 2\mathbf{G}_{3} - 2C_{2} - \mathbf{Q} - \lambda \mathbf{G}_{2} \mathbf{g}^{2} + 4\mathbf{Q}\ell + 2\mathbf{G}_{4} - \mathbf{Q}\ell + 1 - \lambda \mathbf{G}_{3} - 3C_{3} \mathbf{g}^{3} + \dots = 0$$
(7.29)

(7.29)

atau dalam bentuk umum persamaan (7.29) diungkapkan oleh

$$\{ +\ell +1 \} \lambda \bar{C}_i - \{ +1 \} + 2\ell + 2 \}_{i+1} \beta^i = 0.$$
 (7.30)

Karena ρ^i adalah variabel dan tidak sama dengan nol maka konstantanya yang harus sama dengan nol.

$$[+\ell + 1] - \lambda \overline{C}_i - [+1] + 2\ell + 2\overline{C}_{i+1} = 0$$
 (7.31)

atau

$$C_{i+1} = \frac{(+\ell+1) + \lambda}{(+1)(+2\ell+2)} C_i = C_{i\ell} C_i$$
 (7.32)

Untuk i berharga besar sekali i >>> maka:

$$C_{i+1} \sim \frac{C_i}{i} \tag{7.33}$$

yang sama dengan koefisien rasio yang diperoleh dalam penjabaran:

$$e^{\rho} = \sum C_i \ \rho^i \ \sum \frac{\rho^i}{i!} \tag{7.34}$$

$$\frac{C_{i+1}}{C_i} = \frac{i!}{(+1)!} = \frac{1}{i+1} \sim \frac{1}{i}$$

Berdasarkan apa yang sudah kita pelajari ternyata bentuk dari $\cup \Phi$ dibangkitkan oleh deret persamaan (7.26) mempunyai karakteristik sebagai berikut:

Persamaan tersebut divergen untuk harga ρ besar ($\rho \to \infty$) maka $\cup \Phi \to \infty$.

Untuk memperoleh suatu fungsi gelombang yang finit maka penjabaran persamaan (7.26) harus diterminasi pada batas harga tertentu dari i kita namakan saja misalnya i_m dimana pada harga i = i_m haruslah $\Gamma i \ell = 0$. Dengan demikian seluruh parameter persamaan (7.32) adalah positif $\Gamma i \ell$ dapat dihilangkan jika:

$$i_{\text{max}} + \ell + 1 = \lambda \tag{7.36}$$

Fungsi \cup adalah suatu polinomoial dalam term eksponensial berbentuk persamaan (7.26). Ternyata dengan melakukan terminasi fungsi gelombang menjadi finit atau terbatas di setiap tempat sesuai dengan yang diinginkan. Karena i dan ℓ adalah integer maka λ juga integer yang dinamakan bilangan kuantum utama n.

$$n = i_{\text{max}} + \ell + 1 \tag{7.37}$$

Jadi syarat pencilan (*cut off*) pada deret persamaan (7.26) yang akan membuat $\cup \mathbf{G}$ menjadi finit untuk seluruh ρ juga dapat membantu menentukan nilai eigen λ . Dari persamaan (7.16).

$$\lambda_n^2 = n^2 = \frac{Z^2 R}{|E_n|} \tag{7.38}$$

atau

$$E_n = -\left| E_n \right| \frac{-Z^2 R}{n^2} \tag{7.39}$$

menyatakan energi elektron dalam atom pada orbital yang menempati bilangan kuantum utama n. Perumusan tersebut tepat sama seperti yang diturunkan oleh Bohr.

2. Polinomial Laquerre

Fungsi eigen hidrogen yang berkaitan dengan nilai eigen E_n diungkapkan dalam term persamaan (7.26) dengan deret mencakup i yang dibatasi pada harga

$$i_{\text{max}} = n - \ell - 1 \tag{7.40}$$

dan dengan relasi *recurrence* untuk koefisien \mathbf{c}_i diungkapkan oleh persamaan (7.32) ialah:

$$\bigcup_{n\ell} \Phi = e^{-\rho/2} \rho^{\ell+1} F_{n\ell} \Phi$$

$$= A_{n\ell} e^{-\rho/2} \rho^{\ell+1} \sum_{i=0}^{n-\ell-1} C_i \rho^i$$

$$C_{i+1} = \Gamma_{i\ell} C_i$$
(7.41)

dengan $\rho = 2 k_n r$, dan

$$k_n = \frac{Z}{a.n} \tag{7.43}$$

dengan $A_{n\ell}$ adalah konstanta normalisasi. Polinomial $F_{n\ell}$ \bigcirc yang berorde $n-\ell-1$ diperoleh dari apa yang dikenal sebagai Polinomial Laquerre terasosiasi (associated Laquerre Polinomials $L_{n-\ell-1}^{2\ell+1}$)

3. Degenerasi

Harga $i_{\rm max}$ pada persamaan (7.37) lebih besar dan sama dengan nol $i_{\rm max} \ge 0$ maka :

$$\ell \le n - 1 \tag{7.44}$$

) solusi persamaan Schrodinger yang berkaitan dengan nilai eigen yang sama E_n . Dengan cara ini kita peroleh degenerasi dari energi eigen E_n yaitu

$$E_n = \sum_{\ell=0}^{n-1} \mathbf{Q}\ell + 1 = n^2 \tag{7.48}$$

Harga-harga yang diijinkan dari n, ℓ , dan m ialah

$$n = 1,2,3,4,...$$

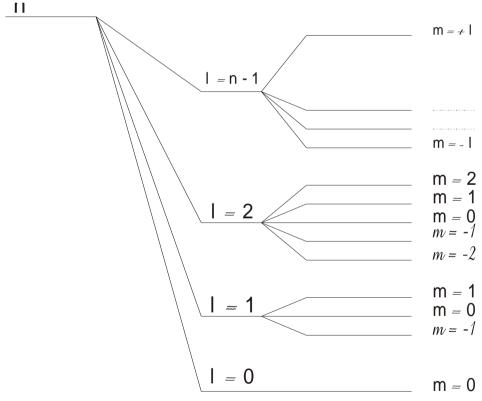
$$\ell = 0,1,2,3,...,(n-1)$$

$$m = -\ell, -\ell+1,...,0,1,2,...+\ell$$

Tabel 7.1 Harga-harga yang diperbolehkan untuk ℓ dan m pada harga n = 1,2, dan 3

n	1		2							3				
ℓ	0	0			1		()		1		2		
Notasi Spektroskopik Untuk keadaan (state)	1s	2s			2p		3	SS		3p		3d		
m	0	0	-1	0	1	0	-1	0	1	-2	-1	0	1	2
Degenerasi dari keadaan n ²	1		4							9				

Bila dinyatakan dalam bentuk diagram maka dapat digambarkan sebagai berikut :



Gambar 7.1 Degenerasi keadaan yang berkaitan dengan bilangan kuantum utama

Berdasarkan uraian diatas maka energi eigen dan fungsi eigen dari Hamiltonian hidrogenik yang diungkapkan oleh persamaan (7.1).

$$\hat{H} = \frac{\hat{P}_r^2}{2m} + \frac{\hat{L}^2}{2\mu r^2} - \frac{Ze^2}{r}$$

ialah fungsi eigen

$$\varphi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi) \tag{7.49}$$

dengan

$$R_{n\ell}(r) = \frac{A_{n\ell} \cup_{n\ell}}{r} \tag{7.50}$$

 $A_{n\ell}$ adalah konstanta normalisasi yang ditentukan oleh syarat

$$\left\langle \varphi_{n\ell m} \middle\| \varphi_{n\ell m} \right\rangle = \int_{4\pi} d\Omega \int_{0}^{\infty} r^{2} dr \, \varphi_{n\ell m}^{*} \, \varphi_{n\ell m} = 1 \tag{7.51}$$

$$\left|A_{n\ell}\right|^2 \int_{0}^{\infty} \left|\bigcup_{n\ell}\right|^2 dr = 1$$

$$A_{n\ell} = \frac{1}{\sqrt{2}} \sqrt{\frac{(\ell-1)^{3}}{2n(\ell+\ell)^{3}}}$$
 (7.52)

Keortogonalan fungsi-fungsi itu memenuhi relasi:

$$\left\langle \varphi_{n'\ell'm'} \middle| \varphi_{n\ell m} \right\rangle = \delta_{n'n} \delta_{\ell'\ell} \delta_{m'm} \tag{7.53}$$

Energi eigen diungkapkan oleh

$$E_{n} = -\frac{Z^{2} R}{n^{2}}$$

$$= -\frac{\mu \left(e^{2} \right)}{2 h n^{2}}$$
(7.54)

4. Fungsi Keadaan Dasar

Keadaan dasar ialah keadaan dimana n = 1, $\ell = 0$ dan m = 0 dan dituliskan oleh fungsi ϕ_{100} . Dari persamaan (7.48) dan persamaan (7.49):

$$\varphi_{n\ell m}(\boldsymbol{\xi}, \theta, \phi) = \frac{1}{r} A_{n\ell} \cup_{n\ell} Y_{\ell}^{n_1}(\boldsymbol{\theta}, \phi)$$
 (7.55)

$$\varphi_{100} = \frac{1}{r} \bigcup_{10} A_{10} Y_0^0 (\mathbf{Q}, \phi)$$
 (7.56)

Berarti untuk menentukan fungsi keadaan dasar pertama kita harus menentukan U_{100} . Dari persamaan (7.41)

$$\bigcup_{n\ell} (\rho) = A_{n\ell} e^{-\rho/2} \rho^{\ell+1} \sum_{i=0}^{n-\ell-1} C_i \rho^{i}$$

$$\bigcup_{10} (\rho) = A_{10} e^{-\rho/2} \rho C_o$$

Harga
$$C_0 = 1$$
, maka $\bigcup_{10} (\rho) = A_{10} e^{-\rho/2} \rho$

kemudian menentukan harga konstanta normalisasi A_{10} sebagai berikut:

$$\int |\bigcup_{10}|^2 dr = 1$$

$$|A_{10}|^2 \int \rho^2 e^{-\rho} dr = 1$$

Dari persamaan (7.12) $r = \frac{\rho}{2k_n}$ maka:

$$|A_{10}|^2 \int \rho^2 e^{-\rho} d\frac{\rho}{2k_1} = 1$$

$$\left|A_{10}\right|^2 \frac{1}{2k_1} \int_{0}^{\infty} \rho^2 e^{-\rho} d\rho = 1$$

$$\left|A_{10}\right|^2 \frac{1}{2k} \cdot 2 = 1$$

Dari persamaan (3.43) $k_n = \frac{Z}{a_o n}$ untuk keadaan dasar stom hidrogen n = 1 dan z = 1

maka:

$$k_1 = \frac{1}{a_a}$$
,

sehingga diperoleh

$$A_{10} = \frac{1}{\sqrt{a_a}} \tag{7.57}$$

Dengan demikian fungsi gelombang keadaan dasar ternormalisasi. Untuk kearah radial dari atom hidrogen ialah

$$\bigcup_{10} = \frac{1}{(4 - \frac{1}{2})^2} \rho e^{-\frac{\rho}{2}} \tag{7.58}$$

$$R_{n\ell} \bullet = \frac{\bigcup_{n\ell}}{r} \tag{7.59}$$

Untuk $R_{10}(r)$ diperoleh:

$$R_{10} \mathbf{r} = \frac{1}{r} \frac{1}{\mathbf{q}_{o}} \rho e^{-\rho/2}$$

$$\rho = 2k_{n} r = \frac{2zr}{a_{o}} = \frac{2r}{a_{o}} \text{ maka}:$$

$$R_{10} \mathbf{r} = \frac{1}{\mathbf{q}_{o}} 2 \cdot 2 \cdot e^{-r/a}$$
(7.60)

karena

Dengan cara yang sama Anda bisa menentukan fungsi gelombang radial hidrogen untuk n=2 yaitu R_{20} (r) dan R_{21} (r), juga untuk n=3 yaitu R_{30} (r), R_{31} (r) dan R_{32} (r) dan seterusnya. Fungsi-fungsi tersebut dicantumkan dalam tabel 7.2.

Table 7.2 Fungsi-fungsi gelombang radial hidrogen

n	ℓ	$R_{n\ell}\left(r ight)$
1	0	$R_{10} = \frac{1}{a_o^{2}} \cdot 2 \cdot e^{-r/a_o}$
2	0	$R_{20} = \frac{1}{\mathbf{k} a_o} \left[1 - \frac{r}{2a_o} \right] e^{-r/2a_o}$
2	1	$R_{21} = \frac{1}{(a_o)^{2}} \frac{r}{\sqrt{3} a_o} e^{-r/2a_o}$
3	0	$R_{30} = \frac{1}{8a_o} 2 \left[1 - \frac{2r}{3a_o} + \frac{2}{27} \left(\frac{1}{a_o} \right)^2 \right] e^{-r/3a_o}$
3	1	$R_{31} = \frac{1}{8a_o^{3/2}} \frac{4\sqrt{2}}{3} \frac{r}{a_o} \left(1 - \frac{r}{6a_o}\right) e^{-r/a_o}$
3	2	$R_{32} = \frac{1}{8a_o^{3/2}} \frac{2\sqrt{2}}{27\sqrt{5}} \left(\frac{1}{a_o}\right)^2 e^{-r/3a_o}$

Pada persamaan (7.41) $F_{n\ell}(\rho)$ (yang berorde n - ℓ - 1) diperoleh dari apa yang disebut Polinominal Laquerre terasosiasi (associated Laquerre Polynominals) yang dinotasikan dengan:

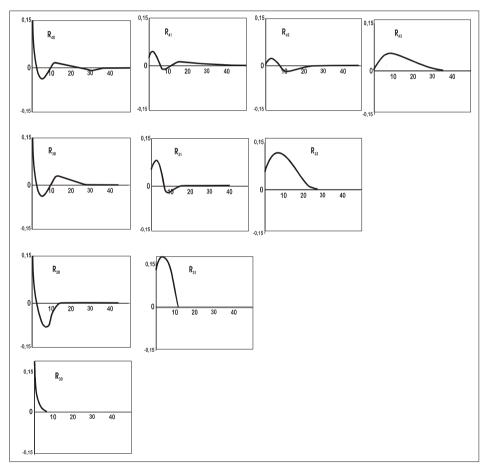
$$L_{n-\ell-1}^{2\ell+1} \oint = \sum_{k=0}^{n-\ell-1} (-1)^{k+1} \frac{(-\ell-1)^{k}}{(-\ell-1-k)!} (\ell+1+k)! k! \rho^{k}$$
(7.61)

Harga-harga polinominal untuk beberapa harga ℓ di cantumkan secara grafik gambar 7.3. Jadi dengan demikian fungsi gelombang radial untuk atom hidrogen ternormalisasi ialah

$$R_{n\ell} \bullet = -\left[\left(\frac{2}{n a_n} \right)^3 \frac{\left(-\ell - 1 \right)}{2n \left(-\ell + \ell \right)^3} \right]^{\frac{1}{2}} e^{-\rho/2} \rho \ell L_{n+\ell}^{2\ell+1} \bullet \rho$$
 (7.62)

dengan

$$L_{n+\ell}^{2\ell+1} \bigcirc = \sum_{k=u}^{n-\ell-1} \leftarrow 1^{k+1} \frac{(k+\ell)^{2}}{(k-\ell-1-k)(k+1+k)k!} \rho^{k}$$
 (7.63)

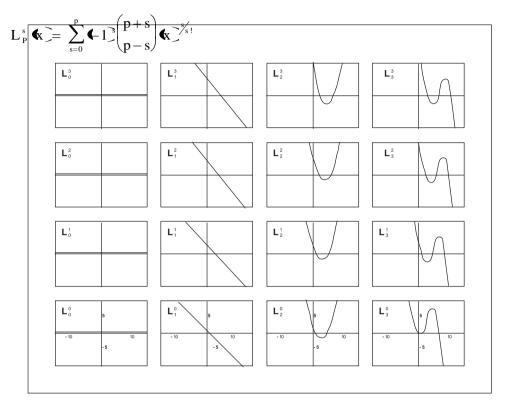


Gambar 7.2

Fungsi eigen radial $R_{n\ell}$ (ρ) untuk elektron dalam atom hidrogen, dengan $\rho = 2r/a_o$ yaitu jarak antara elektron dan inti (r) dibagi dengan radius Bohr a_o .

Sedangkan fungsi-fungsi gelombang untuk keadaan stasioner diskrit dari suatu elektron atau atom seperti hidrogen ialah :

$$\varphi_{n\ell m}(\mathbf{f}, \theta, \phi) = R_{n\ell}(\mathbf{f}) Y_{\ell}^{m}(\theta, \phi)$$
(7.64)



Gambar 7.3 Beberapa harga polinominal Laquerre

Berikutnya kita tinjau solusi untuk fungsi yang bergantung pada sudut. Persamaan (7.3) dinyatakan dalam sistem koordinat bola ialah

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \varphi}{\partial \phi^2} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \varphi}{\partial \theta} \right) + \frac{2m}{\hbar^2} (E - V) (\theta, \phi) = 0 \quad (7.65)$$

Kemudian kita lakukan pemisahan variabel, misalkan:

$$\varphi_{n\ell m}(\mathbf{t}, \theta, \phi) = R_{n\ell}(\mathbf{t}, \theta, \phi) \qquad (7.66)$$

setelah disubstitusikan ke dalam persamaan (7.66), selanjutnya masing-masing suku kita bagi dengan $R_{n\ell}$ \bullet θ ϕ ϕ maka akan diperoleh persamaan:

atau

$$\frac{1}{R \cdot dr} \frac{d}{dr} \left(r^2 \frac{dR \cdot r}{dr} \right) + \frac{1}{\sin^2 \theta \Phi \cdot \Phi} \frac{d^2 \Phi \cdot \Phi}{d\theta^2} \frac{1}{\sin \theta} \frac{1}{\theta \cdot \Phi} \frac{d}{d\theta} \left(\sin \theta \frac{d\theta \cdot \Phi}{d\theta} \right) + \frac{2mr^2}{\hbar^2} \left(E - \frac{Ze^2}{r} \right) = 0 (7.68)$$

Semua suku pada persamaan (7.68) berupa konstanta, misalkan:

$$\frac{1}{R \cdot dr} \left(r^2 \frac{dR \cdot r}{dr} \right) + \frac{1}{\sin\theta \cdot \theta} \cdot \frac{d}{d\theta} \left(\sin\theta \frac{d\theta \cdot \theta}{d\theta} \right) + k = 0$$
 (7.69)

maka

$$\frac{1}{\sin^2\theta\Phi\Phi} \Phi \frac{d^2\Phi\Phi}{d\phi^2} + \frac{1}{\sin\theta\Theta\Phi} \frac{d}{d\theta} \left(\sin\theta \frac{d\theta\Phi}{d\theta}\right) + k = 0$$
 (7.70)

misalkan lagi,

$$\frac{1}{\Phi\theta} \frac{d^2 \Phi \Phi}{d\phi^2} = -m^2 \tag{7.71}$$

maka diperoleh:

$$\Phi_{m} \Phi = A e^{im\Phi}$$
 (7.72)

dengan A adalah konstanta yang dapat kita tentukan dengan cara menormalisasinya.

$$\int_{0}^{2\pi} \phi_{m}^{*} \Phi \Phi_{m} \Phi d\phi = 1$$

$$A^2 \int_{0}^{2\pi} d\phi = 1$$

$$A^2 2\pi = 1$$

$$A = \sqrt{\frac{1}{2\pi}} = \frac{1}{\sqrt{2\pi}}$$

sehingga pers.(7.72) menjadi:

$$\Phi_{\rm m} \Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi} \tag{7.73}$$

Dengan pemisalan pers. (7.71) maka persamaan (7.70) menjadi:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\theta \Phi}{d\theta} \right) + k\theta \Phi - \frac{m^2}{\sin^2\theta} = 0$$
 (7.74)

Langkah berikutnya yang harus Anda lakukan adalah memasukkan variabel baru yaitu kita misalkan

$$X = \cos\theta \tag{7.75}$$

$$\theta = P (x)$$
 (7.76)

maka

$$\frac{dx}{x\theta} = -\sin\theta$$
 atau $d\theta = -\frac{1}{\sin\theta}dx$

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - X^2$$
,

sehingga persamaan (7.74) menjadi :

$$\frac{\mathrm{d}}{\mathrm{dx}} \left\{ \left(-X^2 \right) \frac{\mathrm{d}P\left(\mathbf{x} \right)}{\mathrm{dx}} \right\} + \left\{ k - \frac{\mathrm{m}^2}{1 - X^2} \right\} P\left(\mathbf{x} \right) = 0 \tag{7.77}$$

Persamaan diatas solusinya ditentukan dengan metoda polinominal dan akan diperoleh harga karakteristik dari k ialah

$$k = \ell \left(\ell + 1 \right) \tag{7.78}$$

Dengan menggunakan metoda itu maka persamaan (7.77) pada akhirnya berbentuk:

$$\frac{\mathrm{d}}{\mathrm{dx}} \left\{ \left(-x^2 \frac{\mathrm{dP}_{\ell} \left(\mathbf{x} \right)}{\mathrm{dx}} \right) + \ell \left(+1 \right) \right\}_{\ell} \left(\mathbf{x} \right) = 0$$
 (7.79)

yang dinamakan persamaan differensial Polinominal Legendre. Solusi persamaan tersebut bentuknya sudah standar yaitu:

$$\theta \bullet = CP_{\ell}^{m} \bullet = CP_{\ell}^{m} \bullet (3.80)$$

dengan C adalah konstanta normalisasi yang dapat kita cari dengan cara menormalisasikannya yaitu:

$$\int_{-1}^{+1} \mathbf{P}_{\ell}^{|\mathbf{m}|} \mathbf{K} \mathbf{P}_{\ell}^{|\mathbf{m}|} \mathbf{K} d\mathbf{x} = \begin{cases}
0 \text{ bila } \ell \neq \ell' \\
2 \mathbf{\ell} + |\mathbf{m}| \mathbf{L} \\
\mathbf{U} - |\mathbf{m}|
\end{cases} \text{ untuk } \ell = \ell'$$
(7.81)

Berdasarkan hasil normalisasi tersebut kita peroleh konstanta normalisasi C. jadi bentuk θ (θ) sekarang menjadi

$$\theta_{\ell m} = \sqrt{\frac{\ell \ell + 1}{2} \frac{\ell - |m|}{\ell + |m|}} P_{\ell}^{|m|}$$

$$(7.82)$$

dengan $P_{\ell}^{|m|}$ (\mathbf{k}) polinominal Legendre yang diungkapkan oleh

$$\mathbf{P}_{\ell}^{|\mathbf{m}|} \mathbf{x} = \mathbf{I} - \mathbf{x}^{2} \frac{\mathbf{d}^{|\mathbf{m}|}}{\mathbf{d} \mathbf{x}^{|\mathbf{m}|}} \mathbf{P} \ell \mathbf{x}$$
 (7.83)

dan

$$P_{\ell} = \frac{1}{2^{\ell} \ell!} \frac{d^{\ell} (2-1)}{dx^{\ell}}, \ell = 1, 2, 3, \dots$$
 (7.84)

Dengan demikian fungsi gelombang elektron pada atom hidrogen ialah

$$\Phi_{n\ell m} (\bullet, \theta, \phi) = R_{n\ell} (\bullet) \Phi_{\ell m} (\bullet) \Phi_{m} (\bullet)$$

$$(7.85)$$

dengan $R_{n\ell}$ (r) diungkapkan oleh persamaan (7.62), $\theta_{\ell m}$ (θ) diungkapkan oleh persamaan (7.73) dan Φm (φ) diungkapkan oleh persamaan (7.82). Fungsi keadaan dasarnya ialah

$$\phi_{100} \quad \P, \theta, \phi = R_{100} \quad \P \rightarrow \Phi_{100} \quad \Phi = \frac{2}{a_o^{1/2}} e^{-r/a_o} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2\pi}}$$

$$= \frac{1}{\sqrt{\pi}} \frac{1}{a^{3/2}} e^{-r/a_o} e^{-r/a_o} \qquad (7.86)$$

Fungsi-fungsi keadaan lainnya dicantumkan dalam tabel 7.3.

Latihan 1

- 1. Pada saat kita mau menentukan fungsi gelombang partikel bebas yang hanya bergantung pada arah radial saja, dari persamaan 3.43 mengapa kita dapat memisalkan bagian yang bergantung pada sudut (θ, ϕ) berupa sudut konstanta?
- 2. Buktikan ulang persamaan 3.47 dari persmaan 3.46 dengan memisalkan X= kr!.
- 3. Tentukanlah $J_2(x)!$.
- 4. Buktikan ulang persamaan 3.70 dari persaman 3.66 dalam term a₀, R dan λ!.
- 5. Tentukanlah degenerasi fungsi-fungsi eigen dari elektron dalam atom hidrogen yang berkaitan dengan nilai eigen yang sama bila elektron menempati bilangan kuantum utama n = 2!.
- 6. Tuliskanlah fungsi gelombang elektron yang bergerak di dalam atom hidrogen!.

Latihan 2

- 1) Tunjukkanlah bahwa \bigcup_{10}^{2} mempunyai harga maksimum pada $r = a_{0}$
- 2) Tentukanlah fungsi gelombang radial dari elektron yang berada pada kulit k (n =
 2) di dalam atom hidrogen beserta kemungkiknan-kemungkinannya yang berkaitan dengan harga-harga ℓ yang mungkin
- 3) Tentukanlah fungsi gelombang elektron di dalam atom hidrogen yang berada pada kulit k (n = 2) beserta semua kemungkinan-kemungkinannya yang berkaitn dengan harga-harga ℓ dan m yang dijinkan

Jawaban Latihan 2

1.
$$\cup_{10} = \frac{1}{4 \cdot \sqrt{\frac{r}{a_0}}} r 2e^{\frac{-r}{a_0}}$$
$$\cup_{10}^2 = \frac{1}{4 \cdot \sqrt{\frac{r}{a_0}}} r^2 4e^{\frac{-2r}{a_0}}$$

Fungsi tersebut akan maksimum bila

$$\frac{d \bigcirc_{10}^{2}}{dr} = 0 \qquad \qquad \frac{d \left(\frac{1}{a_{o}^{3}} 4 r^{2} e^{-\frac{2r}{a_{o}}}\right)}{dr} = 0$$

$$\frac{1}{a_{o}^{3}} 8 r^{2} e^{-\frac{2r}{a_{o}}} - \frac{1}{a_{o}^{4}} 8 r^{2} e^{-\frac{2r}{a_{o}}} = 0$$

$$\frac{1}{a_{o}} r = 1 \qquad \qquad r = a_{o}$$

Terbukti bahwa \cup_{10}^2 mempunyai harga maksimum pada $r = a_o$

2. Fungsi gelombang radial dari elektron dalam atom hidrogen dinotasikan oleh $R_{n\ell}(r)$. untuk elektron yang berada pada kulit k yaitu pada n=2 maka harga-harga ℓ yang mungkin ialah 1 dan 0. Jadi dengan demikian fungsi-fungsi gelombang radialnya R_{21} (r) yangberada pada sub kulit 2p dan R_{20} (r) yang berada pada sub kulit 2s. Persamaan gelombang radialnya diungkapkan oleh

$$R_{n\ell} = -\left[\left(\frac{2}{na_o} \right)^3 \frac{(n-\ell-1)}{2n(n+\ell)^3} \right]^{\frac{1}{2}} e^{-\rho/2} \rho^{\ell} L_{n+\ell}^{2\ell+1} \phi$$

dengan

$$\begin{split} L_{n+\ell}^{2\ell+1} & \oint = \sum_{k=0}^{n-\ell-1} -1 \sum_{k=1}^{k+1} \frac{\left(n+\ell\right)^{\frac{2}{3}}}{\left(n-\ell-1-k\right) \cdot \left(n+\ell\right) \cdot \left(n+\ell\right) \cdot \left(n+\ell\right)} \rho^k \\ R_{20} & f = -\left[\left(\frac{1}{a_o}\right)^3 \frac{1}{4 \cdot 2^3}\right]^{\frac{1}{2}} e^{-\frac{n}{2}} + 4 + 2\rho \left(n+\frac{1}{2}\right) \cdot \left(n+\frac{1}{2}\right)$$

Untuk atom hidrogen z = 1

$$\rho = \frac{1}{a_0}r$$

$$R_{20} = \frac{1}{\mathbf{Q}a_0} 2 \left(1 - \frac{r}{2a_0}\right) e^{-\rho/2a_0}$$

Bila elektron berada pada sub kulit 2p maka fungsi gelombang radialnya

$$R_{21} \bullet = -\left[\left(\frac{1}{a_o} \right)^3 \frac{1}{4 \, 2^3} \right]^{\frac{1}{2}} e^{-\rho/2} \rho \left(-\frac{8!^2}{3!} \right)$$

$$= \frac{1}{\left(\frac{1}{a_o} \right)^{3/2}} \frac{1}{2.6.\sqrt{6}} 6 e^{-\rho/2} \rho$$

$$R_{21} \bullet = \frac{1}{\left(\frac{1}{a_o} \right)^{3/2}} \frac{r}{\sqrt{3} a_o} e^{-\rho/2}$$

3. Elektron di dalam atom hidrogen yang menempati kulit k (n = 2) mempunyai kemungkinan untuk berada pada empat posisi atau mempunyai empat fungsi gelombang yang berkaitan dengan satu nilai eigen atau energi yang sama. Untuk n = 2 maka kemungkinan harga ℓ nya ialah 0 dan 1 dan harga m yang diijinkan untuk ℓ = 0 ialah m = 0 dan untuk ℓ = 1 harga-harga m nya ialah 1, 0, -1. dengan demikian fungsi gelombangya ialah $\phi_n \ell_m$ (r, θ , ϕ).

$$\varphi_{200}(r, \theta, \varphi)$$
 atau $\varphi_2 P_s$

$$\varphi_{210}(r, \theta, \varphi)$$
 atau $\varphi_2 P_z$

$$\varphi_{211}(r, \theta, \varphi)$$
 atau $\varphi_2 P_x$

$$\varphi_{2l-1}(r, \theta, \varphi)$$
 atau $\varphi_2 P_y$

$$\varphi_{n(m)}(\theta, \varphi) = R_m (\Phi \otimes \varphi_m (\Phi \otimes$$

Dengan R $_{n\ell}$ (r) adalah fungsi gelombang radial seperti diungkapkan dalam persamaan pada soal no.2

$$\theta_{\ell m} = \sqrt{\frac{\ell \ell + 1}{2} \frac{\ell - |m|}{\ell + |m|}} P_{\ell}^{|m|}$$

$$P_{\ell}^{|m|} = \sqrt{-x^2} \frac{d^{|m|}}{dx^{|m|}} P_{\ell}$$

$$P_{\ell} \triangleq \frac{1}{2^{\ell} \ell!} \frac{d^{\ell} \cdot x^2 - 1^{\ell}}{dx^{\ell}}$$

$$\Phi_{\rm m} \oint = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$\varphi_{20} \left(\mathbf{f}, \theta, \phi \right) = R_{20} \left(\mathbf{f} \right) \theta_{00} \left(\mathbf{f} \right) \Phi_{0} \left(\mathbf{f} \right)$$

$$R_{20} \bullet = \frac{1}{\mathbf{\Phi} \mathbf{a}_o} \sum_{2}^{3/2} 2 \left(1 - \frac{\mathbf{r}}{2\mathbf{a}_o} \right) e^{-\frac{9}{2}\mathbf{a}_o} \text{ (dari soal no.2)}$$

$$\theta_{00} \bullet = \sqrt{\frac{1}{2}} P_o^o \bullet$$

$$P_o^o \bullet = \mathbf{1}_{2^0} \mathbf{0} \frac{d^0 \bullet^2 - 1^0}{dx^0}$$

$$\theta_{00} \bullet = \frac{1}{\sqrt{2}} \qquad \Phi_o \bullet = \frac{1}{\sqrt{2\pi}} e^{i\phi \Phi} = \frac{1}{\sqrt{2\pi}}$$

$$\Phi_{200} \bullet \Theta_o = \frac{1}{2\sqrt{2\pi}} \frac{1}{\mathbf{1}_{0^{-\frac{9}{2}}}} \left(1 - \frac{\mathbf{r}}{2\mathbf{a}_o} \right) e^{-\frac{9}{2}\mathbf{a}_o}$$

$$\Phi_{210} \bullet \Theta_o \bullet = R_{21} \bullet \Theta_o \bullet \Phi_o \bullet = \frac{1}{\sqrt{2\pi}} e^{i\phi \Phi} = \frac{$$

$$P_1^1 = -x^2 \frac{d}{dx} P_1 = \frac{d}{dx} P_1$$

 $\theta_{11} \Theta = \sqrt{\frac{31}{22}} P_1^1 \Phi$

$$P_1^1 = \frac{1}{2} \frac{d(x^2 - 1)}{dx} = x$$

$$P_1^1 = (-x^2)^{1/2} \frac{d}{dx} = (-x^2)^{1/2} = (-\cos^2\theta)^{1/2} = \sin^2\theta$$

$$\theta_{11} \Theta = \sqrt{\frac{3}{4}} \sin \theta$$

$$\Phi_1 = \frac{1}{\sqrt{2\pi}} e^{i\phi}$$

$$\phi_{211} \left(\mathbf{f}, \theta, \phi \right) = \frac{1}{\left(\mathbf{a}_{a} \right)^{\frac{3}{2}}} \frac{r}{\sqrt{3} a_{o}} e^{-\frac{r}{2} a_{o}} \sqrt{\frac{3}{4}} \sin \theta \frac{1}{\sqrt{2\pi}} e^{i\phi} = \frac{1}{8\sqrt{\pi} a_{o}} \frac{r}{a_{o}} e^{-\frac{r}{2} a_{o}} \sin \theta e^{i\phi}$$

$$\phi_{211} (\mathbf{f}, \theta, \phi) = R_{21} (\mathbf{f}) \theta_{11} (\mathbf{f}) \Phi_{-1} (\mathbf{f})$$

$$R_{21}$$
 $=$ $\frac{1}{\mathbf{\Phi} a_0} = \frac{1}{\sqrt{3} a_0} e^{-\frac{\pi}{2} a_0}$

$$\theta_{11} \Theta = \frac{\sqrt{3}}{\sqrt{4}} \sin \theta = \frac{\sqrt{3}}{2} \sin \theta$$

$$\Phi_1 = \frac{1}{\sqrt{2\pi}} e^{i\phi}$$

 Table 7.3 Fungsi Gelombang Ternormalisasi dari atom Hidrogen untuk n = 1,2,3

n	ł	m	Ф (ф)	Θ (θ)	R (r)	$\Psi(r, \theta, \phi)$
1			$\frac{1}{\sqrt{2\pi}}$			$\frac{1}{\sqrt{\pi}} \frac{1}{a_o^{\frac{3}{2}}} e^{-r/a_o}$
2	0	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2\sqrt{4} a_o^{\frac{3}{2}}} \left(2 - \frac{r}{a_o} \right) e^{-r/a_o}$	$\frac{1}{4\sqrt{2\pi a_{o}^{\frac{3}{2}}}} \left(2 - \frac{r}{a_{o}}\right) e^{-r/2a_{o}}$
	1	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{\sqrt{6}}{2}\cos\theta$	$\frac{1}{2\sqrt{6} a_o^{\frac{3}{2}}} \frac{r}{a_o} e^{\frac{-r}{a_o}}$	$\frac{1}{4\sqrt{2\pi a_{o}^{\frac{3}{2}}}} \frac{r}{a_{o}} e^{-\frac{r}{a_{0}^{2}}} \cos \theta$
	1	1	$\frac{1}{\sqrt{2\pi}}e^{\mathrm{i}\phi}$	$\frac{\sqrt{3}}{2}$ Sin θ	$\frac{1}{2\sqrt{6}a_{o}^{3/2}}\frac{r}{a_{o}}e^{-r/a_{o}}$	$\begin{split} &\frac{1}{4\sqrt{2\pi a_{o}^{\frac{3}{2}}}}\left(2-\frac{r}{a_{o}}\right)e^{\frac{-r}{2}a_{o}}\\ &\frac{1}{4\sqrt{2\pi a_{o}^{\frac{3}{2}}}}\frac{r}{a_{o}}e^{\frac{-r}{a_{o}^{2}}}\cos\theta\\ &\frac{1}{3\sqrt{\pi}a_{o}^{\frac{3}{2}}}\frac{r}{a_{o}}e^{\frac{-r}{2}a_{o}^{2}}\sin\thetae^{i\phi}\\ &\frac{1}{8\sqrt{\pi}a_{o}^{\frac{3}{2}}}\frac{r}{a_{o}}e^{\frac{-r}{2}a_{o}^{2}}\sin\thetae^{-i\phi} \end{split}$
	1	1	$\frac{1}{\sqrt{2\pi}}e^{-\mathrm{i}\varphi}$	$\frac{\sqrt{3}}{2}$ Sin θ	$\frac{1}{2\sqrt{6}a_{o}^{3/2}}\frac{r}{a_{o}}e^{-r/a_{o}}$	$\frac{1}{8\sqrt{\pi} a_o^{\frac{3}{2}}} \frac{r}{a_o} e^{\frac{-r}{2} a_0^2} \sin \theta e^{-i\phi}$

3	0	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{1}{\sqrt{2}}$	$\frac{2}{81\sqrt{6} a_o^{\frac{3}{2}}} \left(27 - 18 \frac{r}{a_o} + 2 \frac{1}{a_o} \right)$	$\frac{1}{81\sqrt{3\pi} a_o^{\frac{3}{2}}} \left(27 - 18 \frac{r}{a_o} + 2 \frac{r^2}{a_o^2} \right) e^{-r/3a_0^2}$
						$\frac{1}{81\sqrt{3\pi} a_o^{\frac{3}{2}}} \left(27 - 18 \frac{r}{a_o} + 2 \frac{r^2}{a_o^2} \right) e^{\frac{-r}{3} a_0^2}$ $\frac{1}{81\sqrt{\pi} a_o^{\frac{3}{2}}} \left(6 - \frac{r}{a_o} \right) \frac{r}{a_o} e^{\frac{-r}{3} a_0^2} \sin \theta e^{i\phi}$
	1	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{\sqrt{6}}{2}\cos\theta$	$\frac{4}{81\sqrt{6} a_o^{\frac{3}{2}}} \left(6 - \frac{r}{a_o} \right) \frac{r}{a_o} e^{-\frac{r}{2}}$	$\frac{\sqrt{2}}{81\sqrt{\pi} a_o^{\frac{3}{2}}} \left(6 - \frac{r}{a_o}\right) \frac{r}{a_o} e^{\frac{-r}{3}a_0^2} \cos\theta$ $\frac{1}{81\sqrt{\pi} a_o^{\frac{3}{2}}} \left(6 - \frac{r}{a_o}\right) \frac{r}{a_o} e^{\frac{-r}{3}a_0^2} \sin\theta e^{i\phi}$
	1	1	$\frac{1}{\sqrt{2\pi}}e^{-i\varphi}$	$\frac{\sqrt{3}}{2}Sin \ \theta$	$\frac{4}{81\sqrt{36} a_o^{\frac{3}{2}}} \left(6 - \frac{r}{a_o}\right) \frac{r}{a_o} e$	$\frac{1}{81\sqrt{\pi} a_o^{\frac{3}{2}}} \left(6 - \frac{r}{a_o} \right) \frac{r}{a_o} e^{-r/3a_0^2} \sin \theta e^{i\phi}$
	2	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{\sqrt{10}}{4} \mathfrak{Cos}$	$\frac{4}{81\sqrt{30}a_o^{\frac{3}{2}}}\frac{r^2}{a_o^2}e^{\frac{-r}{3}a_o}$	$\frac{1}{81\sqrt{6\pi}a_{o}^{3/2}}\frac{r^{2}}{a_{o}}e^{\frac{-r}{3}a_{0}^{2}}\left(\cos^{2}\theta-1\right)$

2	1	$\frac{1}{\sqrt{2\pi}}e^{i\varphi}$	$\frac{\sqrt{15}}{2}\sin\theta$	$\frac{4}{81\sqrt{30}a_o^{\frac{3}{2}}}\frac{r^2}{a_o^2}e^{-r/3a_o}$	$\frac{1}{81\sqrt{\pi} a_0^{\frac{3}{2}}} \frac{r^2}{a_0^2} e^{\frac{-r}{3}a_0^2} \sin\theta \cos\theta e^{i\phi}$
2	2	$\frac{1}{\sqrt{2\pi}}e^{2i\phi}$	$\frac{\sqrt{15}}{4} \sin^2 \theta$	$\frac{4}{81\sqrt{30}a_{o}^{3/2}}\frac{r^{2}}{a_{o}^{2}}e^{-r/3a_{o}}$	$\frac{1}{162\sqrt{\pi} a_o^{\frac{3}{2}}} \frac{r^2}{a_0^2} e^{\frac{-r}{3} a_0^2} \sin^2 \theta e^{2i\phi}$
2	1	$\frac{1}{\sqrt{2\pi}}e^{-\mathrm{i}\varphi}$	$\frac{\sqrt{15}}{4} \sin \theta \ C$	$\frac{4}{81\sqrt{30}a_{o}^{3/2}}\frac{r^{2}}{a_{o}^{2}}e^{-r/3}a_{o}$	$\frac{1}{81\sqrt{\pi} a_0^{\frac{3}{2}}} \frac{r^2}{a_0^2} e^{\frac{-r}{3}a_0^2} \sin\theta \cos\theta e^{i\phi}$
2	2	$\frac{1}{\sqrt{2\pi}}e^{-2i\phi}$	$\frac{\sqrt{15}}{4} \sin^2 \theta$	$\frac{4}{81\sqrt{30}a_{o}^{\frac{3}{2}}}\frac{r^{2}}{a_{o}^{2}}e^{-r/3a_{o}}$	$\begin{split} &\frac{1}{81\sqrt{\pi}a_{o}^{\frac{3}{2}}}\frac{r^{2}}{a_{0}^{2}}e^{\frac{-r}{3}a_{0}^{2}}\sin\theta\cos\thetae^{i\phi}\\ \\ &\frac{1}{162\sqrt{\pi}a_{o}^{\frac{3}{2}}}\frac{r^{2}}{a_{0}^{2}}e^{\frac{-r}{3}a_{0}^{2}}\sin^{2}\thetae^{2i\phi}\\ \\ &\frac{1}{81\sqrt{\pi}a_{o}^{\frac{3}{2}}}\frac{r^{2}}{a_{0}^{2}}e^{\frac{-r}{3}a_{0}^{2}}\sin\theta\cos\thetae^{i\phi}\\ \\ &\frac{1}{162\sqrt{\pi}a_{o}^{\frac{3}{2}}}\frac{r^{2}}{a_{0}^{2}}e^{\frac{-r}{3}a_{0}^{2}}\sin^{2}\thetae^{-2i\phi} \end{split}$

Catatan: $a_o = \frac{4 \pi \epsilon_0 \hbar^2}{m e^2} = 0.53 \text{ Å}$ (radius Bohr)