Silabus dan Rencana Perkuliahan

Mata kuliah : PEND.FISIKA KUANTUM

Kode : FI 363

SKS : 3

Nama Dosen: Team Dosen Pend fisika Kuantum

Yuyu R.T, Parlindungan S. dan Asep S

Standar Kompetensi: Setelah mengikuti perkuliahan ini mahasiswa diharapkan memiliki kemampuan menerapkan konsep-konsep dasar fisika kuantum pada persoalan-persoalan fisika mikro sederhana serta dapat mengaplikasikannya sesuai dengan perkembangan sains dan teknologi.

Ming	Kompetensi	Indikator	Materi Pokok/ Sub	Pengalaman	Media	Evaluasi	Su	
gu	Dasar		Materi Pokok	Belajar			mbe	
ke							r	
1	2	3	4	5	6	7	8	
I	M emahami adanya	Menjelaskan:	1. Ide-ide dasar mekanika	- Mendiskusikan konsep	LCD,	UTS,		
	keterbatasan-	Lengkung teoritis	kuantum	Rayleigh dan jean	Power	UAS dan		
	keterbatasan fisika	radiasi benda hitam	1.1. Efek radiasi benda	dalam usahanya	point	Tugas -		
	klasik dakam	Penjelasan Rayleigh	hitam	menjelaskan kurva	dan,	tugas		
	menjelaskan fenomena	dan Jeans tentang	1.2. Efek foto listrik dan	lengkung radiasi	Transpa	mahasis		
	fisis untuk benda-	lengkung teoritis	teori kuantum cahaya	- Menerapkan postulat	ransi.	wa		
	benda mikroskopik	radiasi benda hitam	1.3. Efek Compton	Planck dalam		secara		
	atau benda-benda sub	Postulat Planck	1.4. Postulat de Broglie	merunurunkan		individu		
	atomik, sehingga	tentang rapat energi	1.5 Sifat gelombang dari	persamaan rapat energi				
	perlunya kerangka	terhadap frekuensi	materi	radiasi spektral sebagai				
	teori baru yaitu untuk	Effek foto listrik	1.6. Prinsip ketidakpastian	fungsi dari frekuensi				
	mengatasinya	■ Effek Compton	Heisenbergh	- Mendiskusikan fakta-				
		Sifat partikel dari		fakta empiris efek foto				
		gelombang		loistrik yang secara				
		Membedakan antara		teoritis tidak dapat				

		pendekatan fisika yang harus dibahas dengan mekanika kuantum atau cukup dengan fisika klasik saja Azas ketidakpastian Heisenbergh	dijelaskan oleh fisika klasik - Mendiskusikan teori kuantum Einstein tentang efek foto listrik dan mengapliklasikannya pada fakta-fakta empiris - Menyimpulkan dari fenomena-fenomena fisis radiasi benda hitam, efek Compton dll tentang konsepkonsep baru yang mendukung lahirnya mekanika kuantum - Merumuskan parameter gelombang dengan perameter partikel dalam suatu relasi Planck-Eistein		
II Dan III	Memahami perumusan keadaan suatu sistem				

menurut gan klasik dan ga kuantum		Probabilitas Gelombang Materi 1.1. Keadaan dinamis suatu sistem menurut gambaran klasik dan gambaran kuantum 2.2. Sifat gelombang partikel	- Mendiskusikan sifat- sifat gelombang paket (Group Gelombang) dari gelombang de Broglie		
Memahami f gelombang Y melalui posti	$Y(\mathbf{r},\mathbf{t})$	2.3 Postulat – postulat dalam mekanika kuantum yaitu dari postulat 1samapai postulat VI	- Mendiskusikan terbentuknya postulat I sampai postulat VI		
Memahami matematika dari gelomba	ertentu integral Fourier	2.4 Sifat matematika tertentu dari gelombang paket	Mendiskusikan dan merumuskan transform/integral Fourier dalam mentransformasi persamaan keadaan suatu		

				1	1	1	
				system dari suatu ruang			
				keadaan ke ruang keadaan			
				lain			
	Memahami	Menjelaskan tentang:	2.5. Interpretasi probabilitas	Mendiskusikan tentang:			
	interpretasi	persamaan	dan prinsip	- harga ekspektasi,			
	probabilitas dari	gelombang de Broglie	ketidakpastian	variansi dan			
	gelombang materi	Interpretasi	_	probabilitas dari suatu			
		probabilitas dari suatu		variebel dinamis			
		fungsi gelombang de		- variabel dinamis			
		Broglie		menjadi operator			
		Postulat kunatisasi		guar of			
		• Operator					
		Harga ekspektasi dan					
		variansi					
IV	◆ M emahami dasar	Menjelsksn tentang:	3. Ruang Fungsi gelombang				
dan		Ruang fungsi	3.1. Struktur dari ruang	- Mendiskusikan apa			
V	dasar tentang		fungsi gelombang				
v	formulasi	gelombang sebagai	Tungsi gerombang	yang dinamakan ruang			
	gelombang de	ruang vektor		fungsi gelombang dan			
	Broglie dan	■ Peraklian skala dan		menunjukannya sebagai			
	intrerpretasinya	sifatnya		ruang vektor			
	dalam ruang fungsi	Definisi operator		- Merumuskan produk			
	gelombang partikel	linier		skalar dan sifatnya			
	tunggal	Jumlah operator		- Menentukan perkalian			
	♦ Memahami arti,	Perkalian operator		anatar bilangan dengan			
	fungsi, sifat-sifat			operator dan perklaian			
	dan aplikasi		3.2. Operator Linier	operator dengan			
	operator dalam		3.3. Sifat tak komutatif	operator			
	mekanika kuantum		perkalian operator	_			

Memahami dasar vektor basis orthonormal diskrit dalam ruang fungsi gelombang	Menjelaskan tentang: Vektori basis orthonormal Komponen- komponen suatu fungsi gelombang dalam basis orthonormal diskrit Perkalian skalar dalam komponen- komponennya	3.4. Basis orthonormal diskrit dalam ruang fungsi gelombang	Menjelaskan tentang: - Hubungan komutator dari operator-operator - Penulisan basis orthonormal diskrit dan syarat-syarat yang harus dipenuhi		
Memahami relasi closure dan dapat menerapkannya	Menjelaskan tentang: Relasi closure dan basis Operator adjoint dan operator Hermit	3.5. Relasi closure	Menganalisis tentang produk skalar dari dua fungsi gelombang dalam term komponen- komponenya		
Memahami jenis-jenis operator dan sifat- sifatnya	Menjelaskan tentang: Definisi dan sifat operator invers Definisi dan sifat operator uniter	3.6. Jenis-jenis operator dan sifat-sifatnya.	Mendiskusikan tentang realsi closure dan dapat mengaplikasikannya		

Menjelaskan tentang:	3.7 Fungsi eigen dan nilai	Menganalisis tentang:	
■ Persamaan nilai eiger	n eigen	- operasi suatu operator	
■ Nilai eigen		adjoint dan sifat-	
berdegenerasi dan		sifatnya	
non generasi		- operator Hermitian dan	
■ Nilai eigen operator		mengaplikasikannya	
hermit		- operator Uniter dan	
		invers beserta sifat-	
		sifatntya	
		- Merumuskan	
		persamaan nilai eigen,	
		fungsi eigen dan nilai	
		eigen beserta	
		masalahnya	

VI Dan VII	Memahami persamaan Schrodinger dan dapat mengaplikasikannya pada permasalahan- permasalahan sederhana baik untuk suatu dimensi maupun untuk tiga dimensi	Menjelaskan tentang: Solusi persamaan gelombang mekanik untuk kasus harmonik, monokromatik dan tak teredam Persamaan nilai eigen untuk operator Hamiltonian PersamaanShrodinger bergantung waktu untuk satu dimensi dan tiga dimensi.	 4. Persamaan Schrodinger dan aplikasinya 4.1. Persamaan Schrodinger bergantung waktu 4.2 Persamaan Schrodinger tak bergantung waktu 	Menganalisis tentang: - persamaan gelombang de Broglie yang merupakan salah satu solusi persamaan umum gelombang mekanik untuk kasus harmonik, monokromatik dan tak teredam - Merumuskan persamaan scrodinger berganmtung waktu dari persamaan nilai eigen untuk operator Hamiltonian	Program solusi numeric persama an schrodin ger untuk kasus satu dimensi		
VIII	UTS						
IX		Menjelaskan tentang: Persamaan Scrhodinger tidak bergantung waktu untuk satu dimensi dan tiga dimensi Partikel bebas Step potensial dengan	4.3. Aplikasi persamaan schrodinger tidak bergantung waktu pada permasalahn sederhana untuk satu dimensi.	Merumuskan tentang: - persamaan shrodinger tidak bergantung waktu - persamaan shrodinger tidak bergantung waktu pada peramasalahn-permasalahan sederhana untuk satu			

V		energi di bawah puncak Potensial penghalang dengan energi di atas puncak Sumur potensial persegi berhingga Osilator harmonik		dimensi Mendiskusikan tentang - syarat batas yang digunakan untuk tiap persoalan yang dihadapinya			
X Dan XI	Memahami perumusan persamaan schrodinger untuk kasus tiga dimensi pada berbagai system koordinat dan dapat mengaplikasikannya	 Menjelaskan tentang: Fungsi eigen atau gelombang fungsi Persamaan gelombang datar Hamiltonian partikel bebas dalam sistem koordinat bola Fungsi gelombang radial partikel bebas: fungsi Hankel, Bessel dan Neuman sferis 	 5. Permasalahan partikel bebas dalam ruang tiga dimensi 5.1. Partikel bebas dalam sistem koordinat Cartesian 5.2. Partikel bebas dalam sistem koordinat bola 	Menganalisis tentang: - solusi persamaan schrodinger untuk partikel bebas dalam sistem koordinat Cartesian - n solusi persamaan schrodinger untuk partikel bebas dalam system koordinat bola dalam arah radial - perasamaan Hankel, Bessel dan Neuman Sferis untuk keadaan dasar			
XII	Memahami	Menjelaskan tentang:	6. Peramasalahn Gaya	Memganalisis tentang:	Gambar	•	

	permasalahan gaya sentral dan dapat menentukan solusinya dengan mengaplikasikan persamaan schrodinger untuk kasus tiga dimensi	 Operator Hamiltonian untuk lektron dalam atom Hidrogen Polinom Laguerre sekawan Degenerasi Fungsi-fungsi keadaan dasar Model polar Fungsi keadaan sub orbital 	sentral (Atom Hidrogen) 6.1. Hamiltonian dan nilai eigen dan fungsi — fungsi eigen 6.2. Model polar dari orbital 6.3. Fungsi keadaan sub-sub orbital 6.4 Persamaan keadaan orbital pada keadaan eksitasi	 solusi persamaan gelombang radial untuk elketron dalam atom hidrogen Mendiskusikan tentang: persamaan gelombang radial untuk beberapa keadaan dasar persamaan gelombang dalam atom hidrogen yang bergantung pada sudut θ dan φ persamaan gelombang elektron dalam atom hidrogen model polar dari orbital fungsi-fungsi keadaan sub orbital 	model		
XIII	Memahami momentum susdut orbital baik untuk sistem elektron tunggal maupun sistem elektron banyak	Ceramah, diskusi dan response tentang komponen-komponen momentum sudut orbital dalam sistem koordinat cartesian	 7. Momentum sudut orbital 7.1. Sifat dasar momentum sudut 7.2. Nilai eigen dari operator momentum angular 	Menganalisis tentang operator momentums udut orbital beserta komponen- komponennya		•	

	Menjelaskan tentang: Relasi komutasi antar operator momentum sudut Operator-operator shift	7.3. Fungsi eigen dari operator-operator momentum angular orbital	Menganalisis tentang hubungan antara komutator dengan komponen-komponen momentum sudut orbital	•	
XIV Dan XV	Mejelaskan tentang: Persamaan nilai eigen untuk operator \hat{j} Persamaan nilai eigen untuk operator \hat{j}^2 Harmonik bola Operator CSCO Representasi gandeng dan tak gandeng en Penjumlahan momentum sudut untuk system dua elektron Aturan penjumlahan	7.4. Penjumalahan momentum sudut orbital	Menganalisis tentang hubungan antara operator momentum sudut orbital total beserta komponen-komponennya serta relasi komutatornya Mendiskusikan tentang operator shift gesreta relasi komutatornya Memformulasikan tentang: relasi antar operator nilai eigen dari operator momentum sudut orbital total dan momentum sudut yang searah sumbu z fungsi-fungsi eigen dari operator momentum		

XVI	UAS		sudut orbital total unruk sistem dua elektron dan iystem elektron banyak
			koefisien Clebsh-GordanMenganalisis tentang:harga-harga momentum
			sudut dari sistem kartesius ke sistem koordinat boal
			tentang - operator momentum
			searah sumbu z Mentransformasikan
			sudut orbital total dan momentum sudut yang

