Direction of acceleration due to gravity vectors

- *

Acceleration due to gravity is a vector quantity.

- Vectors can be represented by an arrow to show magnitude and direction
- On your whiteboards, draw the direction of acceleration for the following objects.
- The dashed line represents its path.
- * not drawn to scale

\#1. A pebble dropped from a bridge

\#1. A pebble dropped from a bridge

 *
The vector is oriented down.

\#2. A baseball tossed up in the air, halfway up the path

\#2. A baseball tossed up in the air, halfway up the path

The vector is oriented down.

\#3. A baseball tossed up in the air, at the top

\#3. A baseball tossed up in the air, at the top

The vector is oriented down.

\#4. A baseball tossed up in the air, right before it strikes the ground

\#4. A baseball tossed up in the air, right before it strikes the ground

The vector is
oriented down.
\#5. A football is thrown at a 45° * angle, at the top of its path

\#5. A football is thrown at a 45° * angle, at the top of its path

\#6. A cannonball rolling off a table

\#6. A cannonball rolling off a table

The vector is oriented down.

- What can you summarize about the direction of the vector representing acceleration of all these objects?
-What are other examples?
- The rock pebble football and all have different masses. How does this affect the magnitude of the acceleration vectors?
- On Earth, what would its magnitude be?

