
The Système International

SI Units

GEL2006

Base Quantity		Base Unit	
Name	Symbol	Name	Symbol
Time	t	second	S
Length	L	metre	m
Mass	m	kilogram	kg
Temperature	Т, Ө	kelvin	K
Electric Current	Ι	ampere	А
Amount of Substance	n	mole	mol
Luminous Intensity	(not in A Level)	candela	cd

Physical Quantity	Defined as :	Unit	Special Name
velocity			
acceleration			
density			
momentum			
force			
pressure			
work (energy)			
power			
electrical charge			
potential difference			
resistance			

- Nm = kg kgms⁻²kg⁻¹ m
- kgms⁻² m = kgm²s⁻²
- $\underline{kgm^2s^{-2}} = \underline{kgm^2s^{-2}}$
- .: This equation is homogenous

- $v^2 = u^2 + 2ax$
- $m^2s^{-2} = m^2s^{-2} + ms^{-2}m$
- $\underline{m^2 s^{-2}} = \underline{m^2 s^{-2}} + \underline{m^2 s^{-2}}$
- .: This equation is homogenous

- $F = \underline{mv}$ | | r• $N = kg ms^{-1} m^{-1}$
 - $kgms^{-2} = kgs^{-1}$
 - .: This equation is <u>not</u> homogenous

• What is missing? $kgms^{-2} = kgs^{-1}$

 $ms^{-1} = v \text{ on rhs}$

• .: The equation should read:

- Try these:
- $E_k = \frac{1}{2} m v^2$ J = kg m²s⁻² $N m = kg m^2 s^{-2}$ $kg m^2 s^{-2} = kg m^2 s^{-2}$ OK • and $v = u + at^2$ ms⁻¹ = ms⁻¹ + ms⁻² s² $ms^{-1} = ms^{-1} + m$ Not OK s⁻¹ is missing, so equation should read:

V = u + at

Homework:

Show that these equations are homogenous a) $x = ut + \frac{1}{2}at^2$ b) T = $2\pi\sqrt{l/g}$ c) $v = f\lambda$ d) I = nAvee) W = $\frac{1}{2}CV^{2}$ What is missing here? f) F = mv - mu

This powerpoint was kindly donated to <u>www.worldofteaching.com</u>

http://www.worldofteaching.com is home to over a thousand powerpoints submitted by teachers. This is a completely free site and requires no registration. Please visit and I hope it will help in your teaching.