## Chapter 3

## Newton's Law

## Newton's Laws

$\sigma$ Newton's First Law
Law of Inertia
$\sigma$ Newton's Second Law
$\checkmark$ F = ma

- Newton's Third Law

Action Reaction
$\odot$ Law of Universal Gravitation

$$
F=\frac{G m m^{\prime}}{r^{2}}
$$

## Mass

$\sigma$...is measured in kilograms.
${ }^{\circ} \cdot \ldots$ is the measure of the inertia of an object.
$\sigma$ Inertia is the natural tendency of a body resist changes in motion.

## Force

* ...the agency of change.
$\sigma$...changes the velocity.
© ...is a vector quantity.
$\circledast$...measured in Newton's.


## Newton's First Law



Law of Inertia

の"A body remains at rest or moves in a straight line at a constant speed unless acted upon by a force."

## Newton's First Law

*No mention of chemical composition * No mention of terrestrial or celestial realms
-Force required when object changes motion
$\circledast$ Acceleration is the observable consequence of forces acting

## Newton's Second Law



The Sum of the Forces acting on a body is proportional to the acceleration that the body experiences

$$
\Sigma \mathrm{F} \propto \mathbf{a}
$$

$$
\Sigma \mathbf{F}=(\text { mass }) \mathbf{a}
$$

## $\stackrel{\vec{F}}{ }=m \vec{a}$

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \\
& \sum F_{y}=m a_{y} \\
& \sum F_{z}=m a_{z}
\end{aligned}
$$

## Newton's Third Law



- Action-Reaction
$\sigma$ For every action force there is an equal and opposite reaction force


## The Law of Gravity

© Every mass exerts a force of attraction on every other mass.
๔ The math...

$$
F=\frac{G m m^{\prime}}{r^{2}}
$$

$$
\mathfrak{G}=6.67 \times 10-11 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

## Gravity Questions

$\sigma$ Did the Moon exert a gravitational force on the Apollo astronauts?
$\sigma$ What kind of objects can exert a gravitational force on other objects?

## Gravity Questions

$\approx$ The constant G is a rather small number. What kind of objects can exert strong gravitational forces?

ซ If the distance between two objects in space is doubled, then what happens to the gravitational force between them?

## Weight

$\sigma$ The weight of an object $\mathrm{F}_{\mathrm{W}}$ is the gravitational force acting downward on the object.
${ }_{\sigma} \mathrm{F}_{\mathrm{W}}=\mathrm{mg}$

## Tension (Tensile Force)

$\approx$ Tension is the force in a string, chain or tendon that is applied tending to stretch it.
$\circledast F_{T}$

## Normal Force

* The normal force on an object that is being supported by a surface is the component of the supporting force that is perpendicular to the surface.
$\sigma \mathrm{F}_{\mathrm{N}}$


## Coefficient of Friction

- Kinetic Friction
- $\mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}$
© Static Friction
- $\mathrm{F}_{\mathrm{f}} \leq \mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$

In most cases, $\mu_{\mathrm{k}}<\mu_{\mathrm{s}}$.

## On to problems...

