Department of Physics Education Faculty of Mathematics and Science Education Indonesia University of Education

Synabus							
Course	F	undame	ntals of	Code		FIS	501
		Physi	cs I				
Lecturer Name			D	rs. Saeful Karim,	M.Si		
Semester	1	Credit	4	Day of Week	2	Hour	5
Student to attend		550 Classroom 8		8			
Pre-requisites	Non	ne					
Compulsory/electi	ve/otł	ners	ers Compulsory				
Common/Fundame	Common/Fundamental/Special		thers	Fundamental			
Course Objectives	Course Objectives		This course is intended to give basic understanding of essential				
		principles of mechanics and thermodynamics for solving					
		various problems of fundamental physics through either					
		comprehension of theory or simple physics experiment. This					
		course, also, as a root to learn physics in advance.					
Course description The content covers measurement and uncertainty, descri			describing				
		motion	(kinematic	s of particle), N	lewtor	n's first, se	cond, and
		third la	ws of mo	tion, work and	energ	y, linear m	nomentum,
		rotational motion, bodies in equilibrium (elasticity and fracture),					
		gravitation, fluids, temperature and kinetic theory, heat, and the					
			thermodyna				
Compulsory textbo	ook			r.1991. <i>Physics f</i>			-
				on, Worth Pu			islated in
			Indonesian Language by Lea Prasetio and Rahmad W				
		Adi.1998. Fisika untuk Sains dan Teknik, Edisi ketiga,					
				gga, Jakarta.	D1 ·	(D ! !	1
				Giancoli.1998.			
), Fifth Edition,			
				ted in Indonesia			
		L.	lanum.2001	. <i>Fisika</i> , Edisi Pe	ertama	, Jilid I, Erla	angga.
D - C 1 1		2) 5	· · · · · · · · · · · · · · · · · · ·	1	1	1070 DI	···· ···
Reference books		,		lay and Robert R		•	
				hn Wiley &		s,Inc. Trar	
				Language by I			
			akarta.	5. <i>Fisika</i> , Edisi	Kellill	ia, Jiilu I,	Enangga,
		J	anaita.				
Teaching			OHT				
Materials/Teaching	σ			monstration Appa	rotuc		
Aids	5	•	i liysics Del	monsulation Appa	uatus		
1100							

Syllabus

Evaluation Method	Achievement of students for completed this course is based		
	upon series of test, special task, including the result of		
	experiments which is integrated in each topic.		
Request to Student	Write experiment reports		

Week	Schedule	Activities	References
1 st	<i>Introduction</i> : Physics and its relation to	Lecture,	Ref 1:p.1-19
	other fields, Models, theories, and laws,	discussion,	Ref 2:p.1-21
	Physical quantities, standards, and units,	demonstration,	Ref 3:p.1-19
	the International system of units,	and exercise.	
	changing units, measurement and		
	uncertainty, and significant figures and		
	order of magnitude.		
2^{nd}	Describing Motion (Kinematics in One	Lecture,	Ref 1:p.22-52
	Dimension): Reference frames and	discussion,	Ref 2:p.22-55
	coordinate systems, Speed,	demonstration,	Ref 3:p.43-74
	displacement, average velocity,	and exercise.	
	instantaneous velocity, acceleration, one		
	dimensional motion-variable velocity,		
	one dimensional motion-variable		
	acceleration, one dimensional motion-		
	constan acceleration, freely falling		
	bodies, and graphical analysis of linear		
	motion.		
3 rd	Kinematics in Two or Three	Lecture,	Ref 1:p.53-86
	Dimensions (Vectors): Vectors and	discussion,	Ref 2:p.56-89
	scalars, additional vectors-graphical	demonstration,	Ref 3:p.75-104
	methods, substraction of vectors,	and exercise.	
	multiplication of a vector by a scalar,		
	Analytic method for adding vectors,		
	relative velocity, projectile motion,		
	uniform circular motion, and tangential		
4	acceleration in circular motion.		
4^{th}	Motion and Force (Dynamics-I):	Lecture,	Ref 1:p.87-121
	Newton's first law of motion, Force,	discussion,	Ref 2:p.90-131
	mass, Newton's second law of motion,	demonstration,	Ref 3:p.105-141
	Newton's third law of motion, weight-	and exercise.	
	the force of gravity and the normal		
	force, free body diagrams, and some		
46	applications of Newton's law of motion.		
5 th	Motion and Force (Dynamics-II):	Lecture,	Ref 1:p.122-154
	Frictional forces, the dynamics of	discussion,	Ref 2:p.113-171
	uniform circular motion, and	demonstration,	Ref 3:p.142-172
	classification of forces; inertial forces,	and exercise.	
	nonuniform circular motion, and		
	centrifugation		

6 th	EXAMINATION-1		
7 th	<i>Work and Energy</i> : Kinetic Energy, work, work and kinetic energy, work done by weight, work done by a variable force, work done by a spring force, power, kinetic energy at high speeds, potential energy, path independence of conservative forces, conservation of mechanical energy, work done by nonconservative forces, conservation of energy.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.155-209 Ref 2:p.172-212 Ref 3:p.173-239
8 th and 9 th	Systems of Particles and Conservation of Linear Momentum : The center of mass, Newton's second law for a system of particles, linear momentum, linear momentum of a system of particles, conservation of linear momentum, collisions and impulse, conservation of energy and momentum in collisions, elastic collisions in one dimension inelastic collisions in one dimension, collisions in two dimensions, systems with varying mass (a rocket).	Lecture, discussion, demonstration, and exercise.	Ref 1:p.210-260 Ref 2:p.213-246 Ref 3:p.237-314
10 th	Rotational Motion : The rotational variables, rotation with constant angular acceleration, relating the linear and angular variables, kinetic energy of rotation, calculating the rotational inertia, torque, Newton's second law for rotation, Angular momentum and its conservation, rolling, inertial reference frame and noninertial reference frame, the coriolis force.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.261-316 Ref 2:p.247-283 Ref 3:p.315-414
11 th	Bodies in Equilibrium (Elasticity and Fracture) : Statics-the study of forces in equilibrium, the conditions for equilibrium, the center of gravity, some examples of static equilibrium, stability and balance, elasticity (stress and strain), fracture.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.317-339 Ref 2:p.284-323 Ref 3:p.415-441
12 th 13 th	EXAMINATION-2 <i>Gravitation</i> : Newton's law of universal gravitation, gravity near the earth's surface, gravitational potential energy, satellites and weightlessness, Kepler's law and Newton's synthesis, Einstein	Lecture, discussion, demonstration, and exercise.	Ref 1:p.340-382 Ref 2:p.146-171 Ref 3:p.495-552

	1		
th	and gravitation.	_	
14 th and	Fluids Statics and Dynamics : Density	Lecture,	Ref 1:p.383-422
15 th	and specific gravity, pressure in fluids,	discussion,	Ref 2:p.324-363
	atmospheric pressure and gauge	demonstration,	Ref 3:p.553-608
	pressure, Pascal's principle,	and exercise.	
	measurement of pressure, buoyancy and		
	Archimedes' principle, viscosity,		
	surface tension and capillarity, ideal		
	fluids in motion (flow rate and the		
	equation of continuity), Bernoulli's		
	equation, applications of Bernoulli's		
	principle.		
16 th	Temperature, Heat, and The First Law	Lecture,	Ref 1:p.560-650
	of Thermodynamics : Thermodynamics,	discussion,	Ref 2:p.446-517
	the zeroth law of thermodynamics,	demonstration,	Ref 3:p.694-824
	measuring temperature (the triple point	and exercise.	
	water and the constant volume gas		
	thermometer), the Celcius and		
	Fahrenheit scales, thermal expansion,		
	the ideal gas law, kinetic theory and the		
	molecular interpretaion of temperature,		
	temperature and heat, heat capacity, the		
	first law of thermodynamics, heat		
	transfer mechanisms.		
17^{th}	Entropy and The Second Law of		Ref 1:p.597-687
	Thermodynamics : The second law of	discussion,	Ref 2:p.526-556
	thermodynamics-introduction, heat	demonstration,	Ref 3:p.825-865
	engines, refigerators, air conditioners	and exercise.	
	and heat pump, entropy and the second		
	law of thermodynamics, order to		
	disorder, statictical interpretation of		
	entropy and the second law.		
18^{th}	EXAMINATION –3		