Indonesia University of Education Faculty of Mathematics and Science Education

Course	Th	ermody	ynamics	Code		FIS	509
Lecturer Name			D	rs. Saeful Karim,	M.Si		
Semester	4	Credit	3	Day of Week	2	Hour	5
Student to attend		80		Class	sroom		2
Pre-requisites	Hav	e attend H	Physical Ma	thematics I and II			
Compulsory/electiv	ve/otł	ners		Compulsory			
Common/Fundame	ental/	Special/C	pecial/Others Special				
Course Objectives		Student	Student comprehend basic concept of caloric interaction, work				
	interaction and its application in closed and open systems for						
		hidrostatic and chemical system, paramagnetic system,					
		dielectric system and other thermodynamics system and also					
	comprehend thermodynamics system laws as empirical						
		knowled	dge and able	e to explain their	applic	ations	
Course description		The co	ontent cov	ers Basic conc	epts	of thermo	dynamics,
		thermod	lynamics co	pordinate, mather	natics	for thermo	dynamics,
		properties of pure substance, temperature and zero th law of					
		thermodynamics, system and state equation, external work, heat					
		and the	first law of	f thermodynamic	s eithe	er for close	system or
		open system (Control Volumes), the second law of					
		thermodynamics, Carnot cycle and reversibility, entropy,					
		thermodynamic potential and thermodynamic property					
	relations.						
Compulsory textbo	ook	1) Y	'unus A	.Cengel and	Mi	chael B	oles.1994.
			hermodyna	imics An Engin	eering	g Approacl	<i>n</i> , Second
		E	dition, McC	Jraw-Hill,Inc.			
		2) Mark W.Zemansky and Richard H.Dittman. 1982. <i>Heat</i>					
		a	nd Thermo	odynamics, Sixth	Editio	on, McGrav	w-Hill,Inc.
		Iranslated in Indonesian Language by The Houw					
			10ng.1986.	Kalor dan termo	dinam	<i>ika</i> , terbitai	n ke enam,
		Bandung, Institut Teknologi Bandung (ITB).					
		3) 8	aetul Karin	n. 2001. <i>Matema</i>	tika u	ntuk Termo	odinamika
		() ()	Diktat), Juri	isan Pendidikan I	-isika	FPMIPA U	$\frac{PI}{r}$
Reference books		4) P	aul A Tiple	r.1991. <i>Physics f</i>	or Sci	entits and I	ingineers,
			hird Editi	on, Worth Pu	Dishei	, inc. I ran	slated in
			$\frac{1}{1000}$	Language by Lea	a Pras	etio and R	anmad w
			ul.1998. F	isika uniuk Sain	s aan	I eknik, El	lisi ketiga,
		5) F	liiu I, Eliali	gga. 090 Tarmadinar	nika I		
			imiski Usd	1003 Tormodir	nika, 1 namil-	Departor	·
			andidikan d	1.1775. 1 ei moun Ian Kabudayaan I	Jirolete	1. Dependen	1
		ר P ת	ondidition 7	ian Kebudayaan I	JIICKU	nat jenuera	1
		P P	endidikan d endidikan 7	lan Kebudayaan I	Direkto	orat Jendera	1

Syllabus

Teaching Materials/Teaching Aids	OHTPhysics Demonstration Apparatus
Evaluation Method	Evaluation done through individual assignment, testing, middle semester examination, and last semester examination
Request to Student	Special task in each topic.

We	eek	Schedule	Activities	References
1 st	and	Introduction of Thermodynamics	Lecture.	Ref 1:p.1-35
2^{nd}		(Basic Concepts of Thermodynamics) :	discussion.	Ref 2:p.39-41
		thermodynamics coordinate.	demonstration.	Ref 3:p.1-32
		mathematics for thermodynamics (A	exercise.	Ref 6:p.87-111
		little math-partial derivatives and	practical and	
		associated relations, mathematical	seminar	
		theorems, exact and un-exact		
		differentials, volume expansively,		
		isothermal compressibility, intensive		
		and extensive quantity, thermodynamics		
		and energy, a note on dimensions and		
		units, closed and open systems, form of		
		energy, properties of a system, state and		
		equilibrium, processes and cycles, and		
		pressure.		
3^{rd}		Properties of Pure Substances : pure	Lecture,	Ref 1:p.47-89
		substance, phases of pure substance,	discussion,	Ref 2:p.27-37
		phase change processes of pure	exercise,	Ref 4:p.583-586
		substance, property diagrams for phase	practical and	Ref 5:p.112-116
		change processes, the P-V-T surface,	seminar	Ref 6:p.51-61
		property tables.		
4^{th}		Temperature and The Zero Laws of	Lecture,	Ref 1:p.21-27
		Thermodynamics : macroscopic point	discussion,	Ref 2:p.3-26
		of view, thermal equilibrium,	demonstration,	Ref 4:p.560-591
		temperature concept, measurement of	exercise,	Ref 5:p.18-25
		temperature, thermometric property,	practical and	Ref 6:p.1-21
		comparison of thermometer, ideal gas	seminar	
		temperature, temperature scale,		
		thermocopule, and internal temperature		
-th		scale	-	
5		System and Equation of State:	Lecture,	Ref 1:p.12-17
		Thermodynamics equilibrium	discussion,	Ref 2:p.27-51
		(mechanical equilibrium, chemical	demonstration,	Ref 5:p.26-36
		equilibrium, thermal equilibrium, phase	exercise,	Ref 6:p.51-86
		equilibrium), pure substance, phase of	practical and	
		pure substance, phase change processes	seminar	
		of pure substance, the ideal gas equation		
∠ th		of state, other equation of state.	Lastura	Dof 1 m 100 115
0		External WORK : External WORK, internal	Lecture,	Ref 1:p.100-115
		work, quasistatic process, work in	demonstration	Ref $2:p.32-73$
		D V diagram work darage on the act	demonstration,	Rei 4:p.022-020
		r-v diagram, work depens on the path,	exercise,	Ref 5:p.57-44
		calculation of work for quasistatic	practical and	Kei 0:p.112-123
1		processes, work in changing the length	semmai	

		[1
	of wire, work in varying the charge of		
	reversible cell, work in changing the		
	magnetization of a magnetic solid		
7^{th}	Heat and First Laws of	Lecture,	Ref 1:p.91-175
	Thermodynamics (Closed Systems):	discussion,	Ref 2:p.74-85
	Introduction to the first law of	demonstration,	Ref 4:p.597-621
	thermodynamics, heat transfer,	exercise,	Ref 5:p.45-53
	mechanical forms of work, Concept of	practical and	Ref 6:p.112-125
	heat, adiabatic work, internal energy	seminar	1
	function, the first law of		
	thermodynamics, specific heat, and		
	quasistatic flow of heat (heat reservoirs)		
8 th	EXAMINATION-1		
9 th	Heat and First Laws of	Lecture.	Ref 1:p.177-237
	Thermodynamics (Control Volumes):	discussion.	Ref 6:p.135-187
	Thermodynamics analysis of control	demonstration.	r
	volumes, the steady flow process	exercise.	
	unsteady flow process	practical and	
		seminar	
10^{th}	Ideal Gases : Equation state of a gas,	Lecture,	Ref 1:p.63-70
	compressibility factor, internal energy	discussion,	Ref 2:p.112-150
	of a gas, concept of an ideal gas,	demonstration,	Ref 5:p.54-63
	thermodynamics equations,	exercise,	Ref 6:p.51-62
	experimental determination of heat	practical and	
	capacities, quasistatic adiabatic process	seminar	
11 th	The Second Law of Thermodinamics :	Lecture,	Ref 1:p.239-293
	Introduction to the second law of	discussion,	Ref 2:p.151-176
	thermodynamics, thermal energy	demonstration,	Ref 4:p.650-666
	reservoirs, heat engines, refrigerators	exercise,	Ref 5:p.64-75
	and heat pumps, perpetual motion	practical and	Ref 6:p.189-205
	machines, the scond law efficiency.	seminar	· ·
	scond law analysis of closed systems.		
	scond law aspects of daily life.		
12^{th}	The Carnot Cycle and Reversibility:	Lecture,	Ref 1:p.262-293
	Reversible and irreversible processes.	discussion,	Ref 4:p.657-664
	the Carnot cycle, the Carnot principles.	demonstration.	Ref 5:p.76-85
	the thermodynamics temperature scale.	exercise,	Ref 6:p.167-171
	the Carnot heat engine. the Carnot	practical and	1
	refrigerator and heat pump. Otto cycle-	seminar	
	The ideal cycle for spark ignition		
	engines. Diesel cycle- The ideal cycle		
	for compression ignition engines		
13 th	Entropy : The Clausius inequality	Lecture.	Ref 1:p.296-340
	entropy, the increase of entropy	discussion	Ref 2:p.201-239
	principle, causes of entrony change	demonstration	Ref 4:n 666-675
	what is entropy ? property diagrams	exercise	Ref 5:n 86-111
L	, proporty angluins		

	involving entropy, the T ds relations, the	practical and	Ref 6:p.193-218
	entropy change of pure substances, the	seminar	
	entropy change of solids and liquids.		
14^{th}	Thermodynamic Property Relations :	Lecture,	Ref 1:p.629-663
	The Maxwell relations, general relations	discussion,	Ref 2:p.240-259
	for dU, dS, dH, dG, dF, C_v , and C_p , the	demonstration,	Ref 5:p.112-131
	$\Delta H, \Delta S, \Delta U$ of real gases	exercise,	Ref 6:p.251-277
		practical and	-
		seminar	
15^{th}	EXAMINATION 2		