Department of Physics Education Faculty of Mathematics and Science Education Indonesia University of Education

Syllabus							
Course	Fundamentals of		Code		FIS 502		
		Physic	s II				
Lecturer Name		Drs. Saeful Karim,M.Si					
Semester	1	Credit	4	Day of Week	2	Hour	5
Student to attend		550		Classroom		8	
Pre-requisites	Non	e					
Compulsory/electi	Compulsory/elective/others			Compulsory			
Common/Fundame	non/Fundamental/Special/Others Fundamental						
Course Objectives	Dbjectives This course is intended to give foundation understanding basic			ding basic			
	principles of electricity, magnetism, vibration and wave, and				wave, and		
	modern physics to solve various simple problems through eithe			ugh either			
comprehension of theory or simple physics experim			nent. This				
		course, also, as a root to learn physics in advance.					
Course description	1 Scope of discussion includes : Electric charge and electric field,						
	Gauss' law, electric potential and electric energy (capacitance)				pacitance),		
	electric currents and resistance, DC circuits and instruments				struments,		
	magnetic field, electromagnetic induction and Faraday's law,				lay's law,		
		vibratio	ns and	wave, electro	magn	etic oscillat	tions and
		alternati	ng Curren	t (AC), electro	magne	etic waves,	special
	theory of relativity, and early quantum theory and models of the						
		atom					

Compulsory textbook	 Paul A Tipler.1991. <i>Physics for Scientits and Engineers</i>, Third Edition, Worth Publisher,inc. Translated in Indonesian Language by Lea Prasetio and Rahmad W Adi.1998. <i>Fisika untuk Sains dan Teknik</i>, Edisi ketiga, Jilid II, Erlangga, Jakarta. Douglas C.Giancoli.1998. <i>Physics (Principles With</i> <i>Applications)</i>, Fifth Edition, Prentice-Hall International, Inc. Translated in Indonesian Language by Yuhilza Hanum.2001. <i>Fisika</i>, Edisi Pertama, Jilid II, Erlangga. Paul A Tipler.1991. <i>Physics for Scientits and Engineers</i>, Third Edition, Worth Publisher,inc. Translated in Indonesian Language by Lea Prasetio and Rahmad W Adi.1998. <i>Fisika untuk Sains dan Teknik</i>, Edisi ketiga, Jilid I, Erlangga, Jakarta. Douglas C.Giancoli.1998. <i>Physics (Principles With</i> <i>Applications)</i>, Fifth Edition, Prentice-Hall International, Inc. Translated in Indonesian Language by Lea Prasetio and Rahmad W Adi.1998. <i>Fisika untuk Sains dan Teknik</i>, Edisi ketiga, Jilid I, Erlangga, Jakarta. Douglas C.Giancoli.1998. <i>Physics (Principles With</i> <i>Applications)</i>, Fifth Edition, Prentice-Hall International, Inc. Translated in Indonesian Language by Yuhilza Hanum.2001. <i>Fisika</i>, Edisi Pertama, Jilid I, Erlangga.
Reference books	 5) David Halliday and Robert Resnick.1978. <i>Physics</i>. Third Edition, John Wiley & Sons,Inc. Translated in Indonesian Language by Pantur Silaban & Erwin Sucipto.1985. <i>Fisika</i>, Edisi kelima, Jilid II, Erlangga, Jakarta. 6) David Halliday and Robert Resnick.1978. <i>Physics</i>. Third Edition, John Wiley & Sons,Inc. Translated in Indonesian Language by Pantur Silaban & Erwin Sucipto.1985. <i>Fisika</i>, Edisi kelima, Jilid I Erlangga, Jakarta.
Teaching	• OHT
Materials/Teaching Aids	Physics Demonstration Apparatus
Evaluation Method	Achievement of students for completed this course is based upon series of test, special task, including the result of experiments which is integrated in each topic.
Request to Student	Write experiment reports

Week	Schedule	Activities	References	
1 st and	Electric Charge and Electric Field :	Lecture,	Ref 1:p.3-43	
2^{nd}	Static electricity (electric chrage and its	discussion,	Ref 2:p.1-31	
	coservation), electric charge in the atom,	demonstration,	Ref 5:p.3-59	
	insulators and conductors, induced	and exercise.		
	chrage (the electroscope), Coulomb's			
	law, the electric field, field line, electric			
	fields and conductors.			
3^{rd}	Gauss' Law: A new look at Coulomb's	Lecture,	Ref 1:p.44-72	
	law, flux of an electric field, Gauss' law,	discussion,	Ref 5:p.60-94	
	Gauss' law and Coulomb's law,	demonstration,	-	
	charged isolated conductor, applying	and exercise.		
	Gauss' law (cylindrical symmetry,			
	planar symmetry, spherical symmetry).			
4 th	Electric Potential and Electric Energy	Lecture,	Ref 1:p.73-136	
	(<i>Capacitance</i>): Electric potential and	discussion,	Ref 2:p.32-60	
	potential difference, relation between	demonstration,	Ref 5:p.95-181	
	electric potential and electric field,	and exercise.	-	
	equipotential surfaces, the electron volt			
	as a unit of energy, electric potential due			
	to single point charges, electric potential			
	due to a continuous chrage distribution,			
	electric dipoles, electric potential due to			
	a group of poit charges, electric			
	potential due to an electric dipole,			
	electric potential energy of a system of			
	point charges, potential of a charged			
	conductor, capacitance, dielectrics,			
	dielectrics and Gauss' law, storage of			
	electric energy, thermionic emission and			
	the cathode-ray tube.			
5 th	Electric Currents and Resistance:	Lecture,	Ref 1:p.137-172	
	moving charges and electric current,	discussion,	Ref 2:p.61-93	
	electric current, current density,	demonstration,	Ref 5:p.182-211	
	resistance and resistivity, calculating	and exercise.		
	resisitance from resisitivity, Ohm's law,			
	a microscopic view of Ohm's law,			
	power in electric circuits,			
	semiconductors, and superconductors.			
6 th	DC Circuits and Instruments : DC	Lecture,	Ref 1:p.173-208	
	Circuits and Instruments : Resistors in	discussion,	Ref 2:p.94-131	
	series and in parallel, EMF and terminal	demonstration,	Ref 5:p.212-249	
	voltage, Kirchoff's rules, solving	and exercise.		
	problems with Kirchoff's rules, EMFs in			
	series and in parallel (charging a			
	battery), circuits containing capacitors			

	· · · · · · · · · · · · · · · ·	r	
	in series and in parallel, circuits		
	containing a resisitor and a capacitor,		
	DC ammeters and voltmeters, and		
	coorecting for meter reisitance.		
7 th	EXAMINATION-1		
8^{th}	Magnetism : Magnets and magnetic	Lecture,	Ref 1:p.209-277
	fields, electric currents produce	discussion,	Ref 2:p.132-156
	magnetism, force on an electric current	demonstration,	Ref 5:p.250-337
	in a magnetic field (definition of B),	and exercise.	-
	force on an electric charge moving in a		
	magnetic field, magnetic field due to a		
	straight wire (force between two parallel		
	wires), operational definition of the		
	ampere and coulomb, Ampere's law,		
	torque on a current loop (magnetic		
	dipole moment), applications		
	(galvanometers, motors, loudspeakers),		
9 th and	the Hall effect, and mass spectrometer,	Lastura	Dof 1:p 270 246
9^{th} and 10^{th}	Electromagnetic Induction and	Lecture,	Ref 1:p.279-346
10	Faraday's Law: Induced EMF,	discussion,	Ref 1:p.162-171
	Faraday's law of induction (Lenz's law),	demonstration,	Ref 2:p.156-162
	EMF induced in a moving conductor,	and exercise.	Ref 2:p.172-194
	changing magnetic flux produces an		Ref 5:p.338-408
	electric field, electric generators,		Ref 5:p.409-454
	counter EMF and torque (eddy current),		Ref 5:p.503-515
	transformers (transmision of power),		
	applications of induction (magnetic		
	microphone, tape recording, computer		
	memory, and the seismograph),		
	inductance, energy stored in a magnetic		
	field, ferromagnetism (domains),		
	electromegnets and solenoids, and		
	magnetic fields in magnetic materials		
	(hysteresis).		
11 th and	Vibration and Waves: Simple harmonic	Lecture,	Ref 3:p.425-557
12 th	motion, energy in the simple harmonic	discussion,	Ref 4:p.364-445
	oscillator, vertical sping derivations, the	demonstration,	Ref 6:p.609-655
	reference circle (the period and	and exercise.	
	sinusoidal nature of SHM), the simple		
	pendulum, damped harmonic motion,		
	forced vibration (resonance), wave		
	motion, types of waves, energy		
	transported by waves, reflection and		
	interference of waves, standing waves		
	-		
	diffraction.		

13^{th}	EXAMINATION-2		
14 th	<i>Electromagnetic Oscillations and</i> <i>Alternating Current (AC)</i> : LC oscillations (qualitatively), the electrical- mechanical analogy, LC oscillations (quantitatively), damped oscillations in an RLC circuit, Alternating Current (AC), three simple circuits, the series RLC circuits, power in alternating current circuits.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.347-395 Ref 2:p.194-216 Ref 5:p.455-503
15 th	<i>Electromagnetic Waves</i> : Changing electric fields produce magnetic field (Maxwell equations), Maxwell's fourth equation (displacement current), production of electromagnetic waves, calculation of the speed of electromagnetic waves, light as an electromagnetic spectrum, energy in EM waves, and radio and television.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.397-429 Ref 2:p.215-241 Ref 5:p.516-576
16 th	<i>Special Theory of Relativity</i> : Galilean- Newtonian relativity, the Michelson- Morley experiment, postulates of the special theory of relativity, simultaneity, time dilation and the twin paradox, length contraction, four-dimensional space-time, mass increase, the ultimate speed, $E=mc^2$ (mass and energy) relativistic addition of velocities, and the impact of special relativity.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.582-632 Ref 5:p.912-921
17 th	<i>Early Quantum Theory and Models of</i> <i>The Atom</i> : Discovery and properties of the electron, planck's quantum hypotesis, photon theory of light and the photoelectric effect, photon interaction (Compton effect and pair production), wave-particle duality (the principle of complementarity), wave nature of matter, electron microscopes, early models of the atom, atomic spectra (key to the structure of the atom), the Bohr model, and the Broglie's hypothesis.	Lecture, discussion, demonstration, and exercise.	Ref 1:p.633-663 Ref 5:p.833-895
18^{th}	EXAMINATION –3		