
Data acquisitionData acquisition

• There are certain things that we have to take into account
before and after we take an FID (or the spectrum, the FID is
not that useful after all).

• Some deal with the detection system. Since a computer
will be acquiring the data, we can only take certain number
of samples from the signal (sampling rate). How many will
depend on the frequencies that we have in the FID.

• The Nyquist Theorem says that we have to sample at least
twice as fast than the fastest (higher frequency) signal

• If we sample twice as fast as the frequency, where the dots
are    we, are in the clear.

• On the other hand, if we go too slow and sample at half the
speed at     we end up with a digitized signal in the computer
at 1 / 2 of the real frequency. These peaks will fold over with
the wrong phase in our spectrum. This is called aliasing.

SR = 1 / (2 * SW)



Quadrature detectionQuadrature detection

• In the old days the frequency of B1 (carrier) was somewhere
higher than all other frequencies. This was done to avoid
having frequencies faster (or slower) than the carrier, so the
computer always knew the sign of the frequencies in the FID.

• There are two problems. One, noise, which is always there, is

carrier

• There are two problems. One, noise, which is always there, is
not sampled properly and its aliased into our spectrum. Also,
in order to excite lines far from the carrier, we need very good
pulses, which is never the case.

• Considering this, the best place to put the carrier is the center
of the frequency spectrum:

• There are several things we have to consider before doing it.

carrier



Quadrature detection (continued)Quadrature detection (continued)

• How can we tell which frequency is going faster or slower
relative to the carrier? The trick is to put 2 receiver coils at 90
degrees (with a phase shift of 90 degrees) of each other:
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• The phase of the Faster signals is opposite to that of the
Slower signals, and the computer is then able to sort this out.
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Data processing. Window functionsData processing. Window functions

• Now we have the signal in the computer, properly sampled.
There are some things we can do now a lot easier, and one
of them is filtering. Most information in the FID is in the first
section. As Mxy decays, we have more and more noise:
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Signal + noise… Noise…

• The noise is generally high frequency, and this is why NMR
spectra have this jagged baseline. What if we could filter all
the signals that were higher than a certain frequency?

• We use digital filtering. Intuitively, it means multiplying the
FID by a function that makes the noise at the end smaller:

1



Window functions (continued)Window functions (continued)

• In this case, it is called exponential multiplication, and has
the form:

• Why is it that this removes high frequency noise? Actually,
we are convoluting the frequency domain data with the FT
of a decaying exponential. The FT of this function is a
Lorentzian shaped peak with a width at half-height (WAHH)
proportional the decay rate, or line broadening (LB), in Hz.

F(t) = 1 * e - ( LB * t ) - or - F(t) = 1 * e - ( t / τ τ τ τ )

proportional the decay rate, or line broadening (LB), in Hz.

• Convolution makes the contribution
of everything with a WAHH thinner
than LB smaller in the spectrum
(the scale here is bogus…).

• If we use an LB with the opposite sign, the exponential grows
instead of decaying, letting signals with narrower widths to
pass, improving resolution but lowering signal to noise ratio.

LB
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Sensitivity and resolution enhancementSensitivity and resolution enhancement

• For the following raw FID, we can apply either a positive or
negative LB factor and see the effect after FT:

LB = -1.0 HzLB = 5.0 Hz
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Other useful window functionsOther useful window functions

• Gaussian/Lorentzian: Improves resolution and does not
screw up sensitivity as bad as resolution enhancement alone.

• Hanning: Another resolution/sensitivity enhancement combo.

F(t) = e - ( t * LB + σσσσ2 t2 / 2 )

F(t) = 0.5 + 0.5 * cos( ππππ t / tmax )

• Cosine/Sine: Employed mostly for 2D spectra.

• The right window function depends on the experiment, and,
as usual, there is a lot of fooling around involved...

F(t) = cos( ππππ t / tmax )



Data size and zeroData size and zero--fillingfilling

• Another important consideration is the data size (SI, in
bytes). Remember that it was related to the spectral
width (sampling rate). It is also related to the time we will
sample the FID. Longer sampling times means more data.

• In the good old days, memory, and thus the size of the data,
was awfully scarce. Most machines would only allow 16K
(16384) points to be taken, which meant that if we wanted
good resolution, we could only sample for short periods.

• Even if we have plenty memory, more acquisition time limits
the number of repetitions we can do in a certain period.

• We now define the digital resolution (DR) as the number of
Hz per point in the FID for a given spectral width:

• So, for a SW of 5 KHz and an FID of 16K, we have a digital
resolution of 0.305 Hz/point.

• One obvious problem from this is that if we have a large SW
and a small SI, our resolution may not be able to pick some
of the line separations in our spectra.

DR - digital resolution (Hz/point)
SW - spectral width (Hz)

SI - data size (points)
DR = SW / SI



ZeroZero--filling (continued)filling (continued)

• Is there any way we can increase our digital resolution (I.e.,
the number of points) without having to acquire for longer
times? The trick is called zero-filling.

• What we do is increase the number of data points prior to the
FT by adding zeroes at the end of the FID. We usually add
a power of 2 number of zeroes (8K, 16K, etc.).
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8K data 8K zero-fill

• In this way, we increase the points per Hz ratio, and can in
many cases improve the spectrum. However, it does not help
if we have really crappy data from the start (we don’t get
good resolution if we did not sample enough…).

8K FID 16K FID



Relaxation phenomenaRelaxation phenomena

• So far we haven’t said anything about the phenomena that
brings the magnetization back to equilibrium. Relaxation is
what takes care of this. There are two types of relaxation,
and both are time-dependent exponential decay processes:

Longitudinal or Spin-Lattice relaxation (T1):

• It works for the components of magnetization
aligned with the z axis (Mz).

- Loss of energy in the system to the
surroundings (lattice) as heat.

- Dipolar coupling to other spins,
interaction with paramagnetic particles, etc...
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interaction with paramagnetic particles, etc...

Transverse or Spin-Spin relaxation (T2):

• It acts on the components of magnetization
on the <xy> plane (Mxy).

- Spin-spin interactions (J) dephase Mxy
- Also by imperfections in the magnet
homogeneity (fanning out).

- Cannot be bigger than T1.

• In order to understand relaxation from a phenomenological 
point of view, we have to introduce the Bloch equations,
which describe the evolution of the spin system with time
under the effects of magnetic fields as well as relaxation.
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Bloch equationsBloch equations

• We know that the magnetic field interacts with magnetization
(or the angular momentum) generating a torque that tips it.
We usually deal with B1 in the <xy> plane and Mo in the z
axis. However, the Bloch equations are for any case, and
describe variations of M with time:

dMx(t) / dt = γγγγ [ My(t) * Bz - Mz(t) * By ] - Mx(t) / T2

dMy(t) / dt = γ γ γ γ [ Mz(t) * Bx - Mx(t) * Bz ] - My(t) / T2

dMz(t) / dt = γ γ γ γ [ Mx(t) * By - My(t) * Bx ] - ( Mz(t) - Mo ) / T1

−−−− ωωωωeff = ωωωωo - ωωωω

• The γγγγ appears because it’s L (average angular momentum)
which generates the torque. Without trying to understand
very well were they come from, we can se that the variation
of M in one axis depends on the other two. 

• We’ll analyze the solution for the differential equations for
an ideal case in which we have magnetization on the <xy>
plane exclusively (after a ππππ / 2 pulse and a certain ωωωω…):

Mx(t) = Mo * cos( ωωωωefft ) * e - t / T2

My(t) = Mo * sin( ωωωωefft ) * e - t / T2

Mz(t) = Mo * ( 1 - e - t / T1 )



Bloch equations (continued)Bloch equations (continued)

• Graphically, we have the following:

My(t) = Mo * sin( ωωωωefft ) * e - t / T2

Mz(t) = Mo * cos( ωωωωefft ) * e - t / T2

• From these equations, we can deduce that the best LB
factor to use is 1 / T2...

Mz(t) = Mo * ( 1 - e - t / T1 )



Nuclear Overhauser Effect (NOE)Nuclear Overhauser Effect (NOE)

• The NOE is one of the ways in which the system (a certain
spin) can release energy. Therefore, it is profoundly related
to relaxation processes. In particular, the NOE is related to
exchange of energy between two spins that are not scalarly
coupled (JIS = 0), but have dipolar coupling.

• The NOE is evidenced by enhancement of certain signals in
the spectrum when the equilibrium (or populations) of others
nearby are altered. We use a two spin system energy
diagram to explain it:

βIβS ()
W1SW1I

W

• W represents a transition probability, or the rate at which a
certain transition can take place. For the system in equilibrium
we can have W1I and W1S transitions, which represents single
quantum transitions.

• W0IS and W2IS are zero and double quantum transitions, are
forbidden and have a much lower probability.

αIαS (∗∗∗∗)

(∗∗) αIβS

W1S

W1S

W1I

W1I

βIαS (∗∗)
W2IS

W0IS



Nuclear Overhauser Effect (continued)Nuclear Overhauser Effect (continued)

• The W1I and W1S transitions, are related to spin-lattice or
longitudinal relaxation.

• Here we see that relaxation due to dipolar coupling takes
place when the spins give away energy by processes that
occur at frequencies close to ωωωω = γγγγ * Bo, which include the
movement (translation, rotation) and collision of spins.

• We now saturate the S transition, which means that we
make both its energy levels equal. The populations of the S
transitions are now the same:

W1SW1I

βIβS (∗)

• The W1S transitions are not possible (we have the same
populations in these levels), and the W1I is not happening (we
have not affected the equilibrium for this spin). The W0IS and
W2IS become the only way S can relax.

• These relaxation pathways for S also involve transitions of I,
so thus the enhancement of this signal. W2IS will give positive
enhancement of I, and W0IS will give negative enhancements.

W1S

W1S

W1I

W1I
W2IS

W0IS

αIαS (∗∗∗)

(∗∗∗) αIβS βIαS (∗)



Nuclear Overhauser Effect (even more…)Nuclear Overhauser Effect (even more…)

• We cannot detect W2IS or W0IS, but they affect the way the
spin system relaxes. One has a rate close to twice ωωωω, while
the other one is almost zero. So one will be related to very
slow motions, and the other one to fast tumbling...

• If we now put all this in a big equation (the Solomon
equations) we get something that will help us see several
things. We have:

W2IS - W0IS

2 * W + W + W
ηηηη = γγγγI / γγγγS *

• First, if the molecule tumbles rapidly (all small organic gunk)
we have that under saturation of the I transitions W2IS will
dominate, so the maximum enhancement for S is γγγγI / γγγγS. If we
are looking at the 13C signal while decoupling (saturating)
1H, we get a theoretical enhancement of ~ 4.

• If the molecule tumbles slowly, as a protein, W0IS dominates,
and we have a maximum NOE of - γγγγI / γγγγS. Since here we are
interested in 1H - 1H NOE, the theoretical enhancement will
be ~ -1 (wishfull thinking…).

2 * W1S + W2IS + W0IS 

ηηηη = γγγγI / γγγγS *



Nuclear Overhauser Effect (ugh…)Nuclear Overhauser Effect (ugh…)

• This is all theory. There are other, competing, relaxation
processes ocurring simultaneously.

• Also, the ‘in the middle’s’ are not so clear cut, and we will not
deal with them for the moment.

• It is useful to compare the frequency of the spin system to the
molecular tumbling rate or correlation time, ττττc. 

• ωωωω * ττττc << 1 - This means that the molecule tumbles fast, and
we have positive enhancements. It is called the
extreme narrowing condition (small molecules,
non-viscous solvents).

• ωωωω * ττττc >> 1 - This means that the molecule tumbles slowly,
and we have negative enhancements. It is called
the diffusion limit (proteins, viscous solvents).

• ωωωω * ττττc ≈ 1  - These are the ‘in the middle’s,’ and we can have 
situations in which the NOE goes to zero. It will
happen for certain medium sized molecules and
it depends on the base frequency of the NMR

• There is one things that we left out from our treatment, which 
is the dependence of the NOE with the distance between I
and S. We will see this later in more detail.


