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Abstract 

Microgeometry of two dimensional Random 
Sierspinski Carpets (RSCs) is analyzed. Twelve models of 
2D-RSCs with the same porosity and fractal dimension 
but three kind pore size distributions are investigated. We 
estimate the porosity (φ), specific surface area (s) and 
hydraulic diameter (DH) of the models from the concept 
of two point correlation functions. We also estimate the 
entropy length (L* ) from concept of local porosity 
distribution and local geometry entropies. The porosities 
estimated using the correlation functions agree with the 
calculated porosities. The estimated mean pore diameter 
(rc) generally agree with average (mean) side length of 

pores (L ).The hydraulic diameters (DH) for all models 
are larger than estimated pore diameters (rc). 

Each four models which have the same pore size 
distribution have similar local porosity distribution and 
almost have the same trend of entropy function but not 
similar. The entropy lengths (L* ) of the first four models 
are 15, 14, 15 and 14, respectively, the next four models 
are 16, 14, 15 and 14, respectively and the last four 
models are all 10.  
 

1. Introduction 
 

One of the most important problems in studies of 
porous and heterogeneous media is the specification of 
the random microstructure, which is needed to predict 
macroscopic physical properties. There are four criteria in 
order to study general statistical description of the 
microstructure available [1]: (a) it should be well-defined 
in terms of geometrical quantities, (b) it should involve 
only experimentally accessible parameters, (c) it should 
be economical size and (d) it should be usable and exact 
or appropriate solutions of the underlying equation of 
motion. However, there are only two statistical 
methodologies available which fulfill all four 
requirements; these are correlation functions [1-3] and 
local geometry distributions [1,2, 4-6]. 

The two point correlation function developed by Blair 
et al. [3] is of interest because it provides a measure of 
several important parameters of the microstructure in a 
very compact form and its usefulness is not limited by any 
assumption about particle shape. On the other hand, the 
local geometry distributions are a functional 
generalization of the correlation function approach. There 
are two main reasons for considering local porosity or 
geometry distribution. First, the distribution is potential to 
distinguish between different microstructure [2, 5] and 
second, the basic idea underlying local porosity theory is 
to consider the fluctuations of ‘local porosities’ or local 
volume fractions inside microscopic regions 

(measurement cells) [1]. The size of these regions 
becomes a parameter controlling the transition from 
microscales to macroscales. The length scale dependent 
local porosity distributions are used to calculate length 
scale dependent effective transport coefficients [1].  

In this paper, we analyze microgeometry of two 
dimensional Random Sierspinski Carpets (RSCs). Twelve 
models of 2D-RSCs with the same porosity and fractal 
dimension but three kind pore size distributions are 
investigated.  We obtain estimates of the porosity (φ), 
specific surface area (s) and hydraulic diameter (DH) of 
the models from the concept of two point correlation 
function and the entropy length (L* ) from concept of 
local porosity distribution and local geometry entropies 

2. Microgeometry analysis 

In this section, we describe briefly the concept of two 
point correlation function and local porosity distribution 
which are used for microgeometry analysis.  
 
2.1. Two point correlation functions 

A binary image of the cross section through porous 
media can be idealized as a two-phase medium consisting 
of pore and phase. We can define indicator function f for 
any position x in the material  

1 for pore 

0 for phase (grain) 

              
( )

  
f x


= 


               (1) 

Porosity (φ) can be estimated as a sum of indicator 
function f over the area of the image of any cross section. 
The sum of indicator function f is known as the one point 
correlation function S1 [3]: 

1
( ) ( )S r f x φ= =  .   (2) 

Meanwhile, two point correlation functions (S2) are 
defined as the probability that two points separated by a 
distance r in the pore space [3]:   

       
2
( ) ( ) ( )S r f x f x r= +  .                     (3) 

The other properties that can be estimated from two point 
correlation function is specific surface area (s) defined as 
the ratio of the total surface area of the pore-phase 
interface to the total volume of the porous media. The 
slope near the origin is proportional to the specific 
surface area (s) of the media [3]: 

2
'(0)

4

s
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where a prime denotes a derivative with respect to r. 
Then, we can write a line tangent to the S2 curve at r = 0 
as follows 

2 2
( ) '(0)S r S r φ= + .    (5) 



In fact that the two point correlation functions are 
fluctuated around φ2, an intersection between a line 
tangent to the two point correlation functions S2 and φ2 

can expressed as 
2

2
'(0)

c
S rφ φ= + .   (6) 

Here, rc is an effective pore diameter: 
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It has been studied by Blair et al. [3], equation (6) 
together with equation (7) gives an important physical 
property. As an example, based on idealized sphere packs, 
an effective pore diameter rc is related to the hydraulic 
diameter DH, which is defined as [7] 

4
H

D
s

φ
=  .    (8) 

In derivation of equations (7)-(8), one can see that rc is 
not limited by any assumption about particle shape. Since 
the pore shape of our model is a collection of squares, it’s 
not appropriate to define rc as effective pore diameter. We 
interpret that rc and 4φ/s are corresponded to side length 
(L) of the pore. 

In the case of capillary tube model, the hydraulic 
diameter is given by [8] 

4
H

A

A
D

L
= ,    (9) 

where A and LA are area and perimeter of pores, 
respectively. Since the pore shape is a collection of 
squares, then DH is associated with average side length of 

the pores of the models (L ).  

( ; ) ( ( ))
j j

K Kµ φ δ φ φ= − ,   (10) 
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Figure 1. Twelve models of Random Sierspinski Carpets with their associated pore size distribution. 
 

1.2. Local porosity distribution 

In the case of a stochastic porous medium, the one-cell 
porosity density function is defined for each measurement 
cell as [1]:  

( ; ) ( ( ))
j j

K Kµ φ δ φ φ= −   (11) 

where Kj is an element of the partitioning of the sample 
space and φ(Kj) is local porosity inside a measurement 
cell Kj defined as 

1
( ) ( )

j

j

x K

K f x
M

φ
∈

= ∑ .    (12) 

The average local porosity is then defined as 

        

1

0

( )dφ φµ φ φ= ∫ ,          (13) 

therefore for a homogenous porous medium the 
definitions (11) and (12) yield [1]: 

1

0

( ) ( ; )
j j

K K dφ φµ φ φ φ= =∫ .  (14) 

One interesting possibility is to minimize the entropy 
function [1] 

1

0

( ) ( ; ) log ( ; )I L L L dµ φ µ φ φ= ∫  , (15) 

relative to the conventional a priory uniform distribution. 
The entropy length L* is then determined through the 
condition [1] 

*
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3. Description of the models 

The twelve fractal models of porous media shown in 
figure 1 are generated by Random Sierpinski Carpets 
(RSCs). White indicates the pore space. Model (a) 
through (d) have the same scale factor 4 and generate at 
initial porosity 0.062 and at fourth iteration. The next 
four models (Model (e) through (h)) have scale factor 16 
and generate at initial porosity 0.1216 and at second 
iteration. And the last four models generate at initial 
porosity 0.2275 and at first iteration. The number of 
iteration shows the number of pore size. The 
distributions of pore size for the models are shown in 
figure 1. The resolution of all images is 256x256 pixels. 
All images has the same porosity (φ=0.2275) and fractal 
dimension of phase (D=1.95).  
 

4. Result and Discussion 
 

Figure 2 displays the two point correlation functions 
as a function of r for model (a) and (b), (e) and (f) and (i) 
and (j). Each four models which have the same pore size 
distribution, have similar trend of two point correlation 
function. For large r, the two point correlation functions 
are fluctuated around φ2. The two point correlation 
function S2(r) for images which has the same pore size 
distribution are nearly indistinguishable at small r, but 
distinguishable at large r except for model (i) through (l). 
Figure 2 show that, S2(r) can distinguish models that have 
different kind of pore size distributions. If we look closely 
to figure 2, we can identify the curve bends of S2(r) at 
small r. In these cases the number of bends is equal to 
number of pore size. These bends are easily observed 
because of the square-shape of pores. For rounder-shape 
of pores, the point correlation function is smoother. 

As we mention earlier that, two point correlation 
function is very useful for characterize microgeometry 
and estimate several important properties such as 
porosity, specific surface area (s) and hydraulic diameter 
(DH). Table 1 list pore parameters estimated from two 
point correlation function for all models of figure 1. The 
porosities estimated using the correlation functions agree 
with the calculated porosities. The estimated mean pore 
diameter (rc) generally agree with average (mean) side 

length of pores (L ). The deviation is large for wider 
spectrum of pore size distribution. Even though model (a) 
through (h) have wider spectrum of pore size distribution, 
but the number of larger pore sizes are less extremely than 

smaller ones, resulting average of side length (L ) of the 
models are near 1.  Since model (e) and (f) have a 
collection of pores which uniform in size, the estimated 
mean pore diameter (rc) has almost the same value with 

average of side length (L ). The hydraulic diameters (DH) 
for all models are larger than estimated pore diameters 
(rc). it is consequences of equation (6). Blair et.al[3] used 
higher magnification images for determining the image 

specific-surface area because determining S2(0) from high 
magnification images is not accurate due to poor 
statistical sampling of the total pore space, resulting 
diameter hydraulic (DH) of their samples generally 
smaller than estimated mean pore diameter (rc). 

Although each four models with the same pore size 
distributions have different spatial distributions, their 
graphical of two point correlation functions are having 
almost the same trend. The estimated parameters such as 
porosity, specific surface area, mean pore diameter (rc) 
and hydraulic diameter (DH) generally almost have the 
same value. From this facts, we infer that the spatial 
distribution of porous media in these cases have no 
significant influence to parameters such as specific 
surface area mean pore diameter (rc) and hydraulic 
diameter (DH).     

Local porosity distributions ( ; )Lµ φ are calculated 

using equation (12) for several measurement cells with 
side length L = 5 and L=70 pixels. Each four models 
which have the same pore size distribution, have also 
similar local porosity distribution. Figure 3 shows that 
local porosity distributions are generally concentrated at 

origin and at 1 for small L and around φ  for large L.  

From equation (14), we found that all image of figure 1 is 
found to be homogeneous. Local porosity distribution of 
the models (model (a) to (h)) which have wider spectrum 
of pore size distribution generally more fluctuated than 
the models which have only one pore size (model (i) 
through (l)).  

Figure 4 shows entropy functions as a function of the 
length of the measurement cell. For each four models 
which have the same pore size distribution almost have 
the same trend of entropy function but not similar. The 
entropy lengths (L* ) of the first four models are 15, 14, 
15 and 14, respectively, the next four models are 16, 14, 
15 and 14, respectively and the last four models are all 
10. The entropy length of the last four models are the 
same due to their uniform pore size and are smaller than 
the other models due to their smaller pore size.  
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Figure 2. Two point correlation function for six 
represented models of their associated pore size 
distribution at figure 1. 

Table 1. Pore parameters estimated from two point correlation function for twelve RSC models 
Model φreal φTPCF s  

(in pixel-1) 
rc 

(in pixels) 
DH=4φ/s  
(in pixels) 

L (in pixels) 

(a) 0.2275 0.2271 0.262 2.682 3.476 1.266 
(b) 0.2275 0.2279 0.262 2.685 3.471 1.266 
(c) 0.2275 0.2268 0.262 2.675 3.470 1.266 
(d) 0.2275 0.2270 0.261 2.687 3.483 1.266 



(e) 0.2275 0.2275 0.387 1.817 2.353 1.066 
(f) 0.2275 0.2274 0.387 1.817 2.360 1.066 
(g) 0.2275 0.2275 0.390 1.804 2.333 1.066 
(h) 0.2275 0.2275 0.387 1.814 2.348 1.066 
(i) 0.2275 0.2275 0.684 1.028 1.330 1 
(j) 0.2275 0.2273 0.683 1.029 1.332 1 
(k) 0.2275 0.2275 0.680 1.027 1.337 1 
(l) 0.2275 0.2275 0.683 1.028 1.332 1 
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Local Porosity Distribution (L=70 pixels)
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Figure 3. Local porosity density function µ(φ,L) for 
three represented models of their associated pore size 
distribution at figure 1 for measurement cells of side 
length L=5 and 70 pixels, respectively 
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Figure 4. Entropy function S(L) as a function of the 
length of the measurement cell for three represented 
models of their associated pore size distribution. 

4. Conclusions 

We have analyzed microgeometry of two dimensional 
Random Sierspinski Carpets (RSCs). The twelve models 
of 2D-RSCs with the same porosity and fractal 
dimension but three kind pore size distributions have 
been investigated.  We obtain the porosity (φ), specific 
surface area (s) and hydraulic diameter (DH) and the 
entropy length (L* ). 

The two point correlation function S2(r) as function 
of r for models which have the same pore size 
distribution are nearly indistinguishable at small r, but 
distinguishable at large r except for models which 
consist only one pore size. The porosities estimated 
using the correlation functions agree with the calculated 
porosities. The estimated mean pore diameter (rc) 
generally agree with average (mean) side length of pores 

( L ).The hydraulic diameters (DH) for all models are 
larger than estimated pore diameters (rc). 

Each four models which have the same pore size 
distribution have similar local porosity distribution and 
almost have the same trend of entropy function but not 
similar. The entropy lengths (L* ) of the first four models 
are 15, 14, 15 and 14, respectively, the next four models 
are 16, 14, 15 and 14, respectively and the last four 
models are all 10. The entropy length of the last four 
models are the same due to their uniform pore size and 
are smaller than the other models due to their smaller 
pore size. 
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