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I.1 The Stars

I.1.1 Constellations

At any one time, about 1000–1500 stars can be seen in the sky (above the 

horizon). Under ideal conditions, the number of stars visible to the naked eye can 

be as high as 3000 on a hemisphere, or 6000 altogether. Some stars seem to form 

figures vaguely resembling something; they have been ascribed to various 

mythological and other animals. This grouping of stars into constellations is a 

product of human imagination without any physical basis. 

As an aid to remembering the stars in the night sky, the ancient 

astronomers grouped them into constellations; representing men and women such 

as Orion, the Hunter, and Cassiopeia, mother of Andromeda, animals and birds 

such as Taurus the Bull and Cygnus the Swan and inanimate objects such as Lyra, 

the Lyre. There is no real significance in these stellar groupings – stars are 

essentially seen in random locations in the sky – though some patterns of bright 

stars, such as the stars of the ‘Plough’ (or ‘Big Dipper’) in Ursa Major, the Great 

Bear, result from their birth together in a single cloud of dust and gas. 

Different cultures have different constellations, depending on their 

mythology, history and environment. About half of the shapes and names of the 

constellations we are familiar with date back to Mediterranean antiquity. But the 

names and boundaries were far from unambiguous as late as the 19th century. 

Therefore the IAU (International Astronomical Union) confirmed fixed 

boundaries for 88 official constellations at its 1928 meeting.

The chart in Figure 1.1 shows the brighter stars that make up the 

constellation of Ursa Major. The brightest stars in the constellation (linked by 

straight lines) form what in the Indonesia is called ‘Pedati Usang (cow-drawn 

cart)’, in UK ‘The Plough’ and in the USA ‘The Big Dipper’. On star charts the 

brighter stars are delineated by using larger diameter circles which approximates 

to how stars appear on photographic images. The dotted lines define the borders 

of the constellations on the celestial sphere.
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Figure 1.1 The constellation of Ursa Major (The Great Bear) in northern hemisphere.

The official boundaries of the constellations were established along lines 

of constant right ascension and declination for the epoch 1875. During the time 

elapsed since then, precession has noticeably turned the equatorial frame. 

However, the boundaries remain fixed with respect to the stars.

The stars of a constellation only appear to be close to one another. Usually, 

this is only a projection effect. The stars of a constellation may be located at very 

different distances from us (see Figure 1.2).
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Figure 1.2 The projection effect makes stars at different distance appearing at 
the same distance as seen from the earth.

I.1.2 The name of the stars

In his star atlas Uranometria (1603) Johannes Bayer started the current 

practice to denote the brightest stars of each constellation by Greek letters. The 

brightest star is usually α (alpha), e.g. Deneb in the constellation Cygnus is α 

Cygni, which is abbreviated as α Cyg. The second brightest star is β (beta), the 

next one γ (gamma) and so on. There are, however, several exceptions to this rule; 

for example, the stars of the Big Dipper are named in the order they appear in the 

constellation. After the Greek alphabet has been exhausted, Latin letters can be 

employed. 

Another method is to use numbers, which are assigned in the order of

increasing right ascension; e.g. 30 Tau is a bright binary star in the constellation 

Taurus. Moreover, variable stars have their special identifiers. About two hundred 

bright stars have a proper name; e.g. the bright α Aur is called also Capella. 

As telescopes evolved, more and more stars were seen and catalogued. It 

soon became impractical to continue this method of naming. Thus most of the 
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stars are known only by their catalogue index numbers. One star may have many

different numbers; e.g. the above mentioned Capella (α Aur) is number BD+450

1077 in the Bonner Durchmusterung and HD34029 in the Henry Draper 

catalogue.

I.2 The Sky and Its Motion

I.2.1 Celestial sphere

The ancient universe was confined within a finite spherical shell. The stars 

were fixed to this shell and thus were all equidistant from the Earth, which was at 

the centre of the spherical universe. This simple model is still in many ways as 

useful as it was in antiquity: it helps us to easily understand the diurnal and annual 

motions of stars, and, more important, to predict these motions in a relatively 

simple way. Therefore we will assume for the time being that all the stars are 

located on the surface of an enormous sphere and that we are at its centre. 

Because the radius of this celestial sphere is practically infinite, we can neglect 

the effects due to the changing position of the observer, caused by the rotation and 

orbital motion of the earth.

Since the distances of the stars are ignored, we need only two coordinates 

to specify their directions. Each coordinate frame has some fixed reference plane 

passing through the centre of the celestial sphere and dividing the sphere into two 

hemispheres along a great circle. One of the coordinates indicates the angular 

distance from this reference plane. There is exactly one great circle going through 

the object and intersecting this plane perpendicularly; the second coordinate gives 

the angle between that point of intersection and some fixed direction.

I.2.2 Coordinate systems

I.2.2.1 the horizontal system

The most natural coordinate frame from the observer’s point of view is the 

horizontal frame (see Figure 1.3). Its reference plane is the tangent plane of the 

Earth passing through the observer; this horizontal plane intersects the celestial 

sphere along the horizon. The point just above the observer is called the zenith 

and the antipodal point below the observer is the nadir (these two points are the 
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poles corresponding to the horizon.) Great circles through the zenith are called 

verticals. All verticals intersect the horizon perpendicularly.

Here, you measure how far above the horizon an object lies (its altitude, h) 

and how far east of due north it lies (its azimuth, A). The altitude lies in the range 

[−900,+900]; it is positive for objects above the horizon and negative for the 

objects below the horizon. The zenith distance (z), or the angle between the object 

and the zenith, is obviously

090z h  ……….(1.1)

The values of azimuth are usually normalized between 00 and 3600. More often 

than not, you’ll read or hear directions given in this system. For example: “Venus 

lies 15° high in the west an hour after sunset.”

Figure 1.3 Determine the position of celestial object using the horizontal 
coordinate. Note that only a half of celestial sphere is drawn.

As the star moves along its daily track, both of its coordinates will change. 

Another difficulty with this coordinate frame is its local character. The 

coordinates of the same star at the same moment are different for different 

observers. Since the horizontal coordinates are time and position dependent, they 

cannot be used, for instance, in star catalogues.
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1.2.2.2 the equatorial system

The direction of the rotation axis of the Earth remains almost constant and 

so does the equatorial plane perpendicular to this axis. Therefore the equatorial 

plane is a suitable reference plane for a coordinate frame that has to be 

independent of time and the position of the observer.

The equatorial coordinate closely matches the latitude and longitude we 

use on Earth. Imagine all celestial objects lying on the surface of an infinitely 

large celestial sphere centered on Earth. The celestial equator is an extension of 

Earth’s equator into the sky, and the celestial poles mark where Earth’s axis of 

rotation intersects the celestial sphere.

Astronomers measure how far north or south of the celestial equator an 

object lies (its declination, ) and how far east of the vernal equinox an object lies 

(its right ascension, ). The advantage of the equatorial coordinate system is that 

it remains essentially fixed relative to the stars. So, if you know the right 

ascension and declination of the star Betelgeuse tonight, it will be in the same 

position next week, next year, and even next decade. In the horizon system, an 

object doesn’t stay in the same place or coordinate from one hour to the next.

Right ascension () measured eastwards from the vernal equinox, from 0 hour to 

24 hours. Declination () measured from 0 to +900 from the celestial equator to 

the north pole and from 0 to –900 from the celestial equator to the south pole 

along a secondary great circle to the celestial equator.
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Figure 1.4 Determine the position of celestial object using the equatorial coordinate. In 
this system, all attributes on the surface of the earth (longitude, lalitude and 
poles) are attached to the inner surface of celestial sphere.

Note that the elevation of the pole –the angle between the polar axis and 

the horizon– is equal to the latitude () of the observer (if you're at the south pole, 

the celestial pole is directly overhead; but if you are at the equator, your latitude is 

zero and the elevation of the celestial pole is zero, in other word it's on the 

horizon).

The origin or zero point of this system, the vernal equinox, also takes part 

in the diurnal and annual motion of the stars, so that the axes of the coordinate 

system are fixed by the celestial equator and poles and provided one knows where 

the origin is at any time, any star can be located from its (,) position. We locate 

the vernal equinox using sidereal time.
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1.2.2.3 the ecliptic system

The orbital plane of the earth, the ecliptic, is the reference plane of another 

important coordinate frame. The ecliptic can also be defined as the great circle on 

the celestial sphere described by the sun in the course of one year. This frame is 

used mainly for planets and other bodies of the solar system. The orientation of 

the earth’s equatorial plane remains invariant, unaffected by annual motion. In 

spring, the sun appears to move from the southern hemisphere to the northern one 

(see Figure 1.5). The time of this remarkable event as well as the direction to the 

sun at that moment are called the vernal equinox. At the vernal equinox, the sun’s 

right ascension and declination are zero. The equatorial and ecliptic planes 

intersect along a straight line directed towards the vernal equinox. Thus we can 

use this direction as the zero point for both the equatorial and ecliptic coordinate 

frames. The point opposite the vernal equinox is the autumnal equinox, it is the 

point at which the sun crosses the equator from north to south.

The ecliptic latitude β is the angular distance from the ecliptic; it is in the 

range [−900,+900]. The other coordinate is the ecliptic longitude λ, measured

counterclockwise from the vernal equinox.

Figure 1.5 The ecliptic geocentric (λ, β) and heliocentric (λ’, β’) coordinates are equal 
only if the object is very far away. The geocentric coordinates depend also 
on the earth’s position in its orbit.
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1.2.2.4 sidereal time

The interval between two successive transits of a star across the meridian 

is one sidereal day. This is slightly shorter than the mean solar day because of the 

earth's motion around the sun. The sidereal day is divided into hours, minutes and 

seconds, in the same way as the mean solar day, but these of course are all a bit 

shorter than their mean solar counterparts. The sidereal day would be the measure 

of the true rotation period of the earth, except that it is not actually defined by the 

passage of stars across the meridian, but by the passage of the first point of Aries 

(), the vernal equinox. 

From the point-of-view of determining star positions, 24 sidereal hours 

elapse between successive transits (or upper culmination) of a star across the 

meridian. Any given star thus completes 3600 in 24h, so its hour angle increases at 

a rate of 150 per hour (15 arc-minutes per minute; 15 arc-seconds per second). The 

hour angle of a star is thus generally measured in elapsed units of sidereal time 

since the star crossed the meridian. In other words,

Local Hour Angle (LHA) = Local Sidereal Time (LST) -  of a star .....(1.2)

Figure 1.6 The sidereal time equals the hour angle plus right ascension of any 
objects.
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Note that for a star on the meridian, the LHA of a star is zero. In particular, 

the start of the sidereal day is the instant that the vernal equinox crosses the 

meridian – and the sidereal time is the hour angle of that point. Since the meridian 

is specific to the observer, we refer to sidereal time as Local Sidereal Time. We 

have defined,

LST = LHA of  ……….(1.3)

1.2.3 Daily phenomenon

1.2.3.1 twilight

Since the atmosphere scatters sunlight, the sky does not become dark 

instantly at sunset; there is a period of twilight. 

During civil twilight, it is still light enough to carry on ordinary activities 

out-of-doors; this continues until the Sun's centre altitude is –60. During nautical 

twilight, it is dark enough to see the brighter stars, but still light enough to see the 

horizon, enabling sailors to measure stellar altitudes for navigation; this continues 

until the Sun's centre altitude is –120. During astronomical twilight, the sky is 

still too light for making reliable astronomical observations; this continues until 

the Sun's centre altitude is –180. Once the Sun is more than 180 below the horizon, 

we have astronomical darkness. The same pattern of twilights repeats, in 

reverse, before sunrise.

Example:

Problem Where is the position of star Gamma Crucis (the most northern 
star in constellation Crux) which has right ascension 12h 31m on Sunday 
evening 08.00 local time according to observer in Bandung? It is known 
that the local sidereal time at the moment of observation is 13h. 

Answer Using equation (1.2), we get
LHA = 13h 00m – 12h 31m
LHA = 12h 60m – 12h 31m

                                          LHA = 00h 29m.
The hour angle is positive. This means that star Gamma Crucis is in 
western part of the sky rightnow. It has crossed the meridian 29 
minutes before the observation time.
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1.2.3.2 rising and setting

The standard formula for the altitude of an object is,

sin(h) = sin(δ)sin(φ) + cos(δ)cos(φ)cos(HA)……….(1.4)

In the equation above, each symbol represents altitude, declination, geographic 

latitude of the observer and hour angle of the object respectively. If the value of 

h=00 (the object is on horizon, either rising or setting), then this equation 

becomes,

cos(HA) = –tan(φ)tan(δ)……….(1.5)

which gives the semi-diurnal arc HA, that is the time between the object crossing 

the horizon and crossing the meridian.

Knowing the right ascension of the object, and its semi-diurnal arc, 

we can find the Local Sidereal Time of meridian transit, and hence calculate its 

rising and setting times. However, refraction means that this simplified formula is 

not accurate, since the altitude should be, not 00, but –0034'. This is not too 

important for stars (point source of light), which are rarely observed close to the 

horizon. But it makes an important difference in calculating the times of rising 

and setting of the sun.

Furthermore, "sunrise" and "sunset" generally refer to the moment 

when the top of the sun's disc is just on the horizon. The formula would give us 

the time of rising or settingfor the centre of the sun's disc. So we must also allow 

for the semi-diameter of the sun's disc, which is 16 arc-minutes. So sunrise and 

sunset actually occur when the sun has altitude –0050' (34' for refraction, and 

another 16' for the semi-diameter of the disc).
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I.3 The Seasons

Earth revolves around the sun in a counterclockwise direction if viewed 

from space. Each year’s complete revolution traces an elliptical orbit bringing 

earth closest to the sun in January and furthest away in July. The point at which a 

planet, comet, or asteroid most closely approaches its sun is termed perihelion, 

while the point furthest away is aphelion. At perihelion, about January 3rd, earth 

comes within 147,091,312 km of the sun. At aphelion, about July 4th, it is 

152,109,813 km from the sun. But, it is not the elliptic orbit of the earth itself 

which causes the seasons.

Example:

Problem The Sun is at declination –140. (i) What will be its hour angle 
at sunrise (the moment the top edge of the Sun first appears over the 
horizon), at a latitude of +56020'? (ii) If the Sun is on the local meridian 
at 12h 03m local time, what time is sunrise? (iii) What time is sunset? 
(iv) when will astronomical twilight start and finish?

Answer Using equation (1.4), we get
cos(HA) = { sin(h) – sin(φ)sin(δ) } / cos(φ)cos(δ)

cos(HA) = { sin(–0050’) – sin(+56020')sin(–140) } / cos(+56020')cos(–140)
HA = 69,70 (= 4h 39m) or 290,30 (= 19h 21m)

To decide which, note that the Sun is to the east of the meridian at 
sunrise, so HA = 19h 21m.

The semi-diurnal arc is 4h 39m.
Sunrise is at (12h 03m – 4h 39m) = 07h 24m local time.
Sunset is at (12h 03m + 4h 39m) = 16h 42m local time.

For astronomical twilight, the Sun’s centre altitude is –180. Using the 
same equation, we get

HA = 101.550 = 6h 46m.

So astronomical twilight starts at (12h 03m – 6h 46m) = 05h 17m
local time and ends at (12h 03m + 6h 46m) = 18h 49m local time.
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Figure 1.7 The path of earth’s orbit around the sun. In the northern hemisphere, 
earth is farthest from the sun during early summer and closest during 
early winter.

Seasons are periods of the year with characteristic weather. Many tropical 

and subtropical regions have only wet and dry seasons. Temperate regions such as 

North America and Europe have four seasons: spring, summer, fall (autumn), and 

winter. Seasons result from the fact that earth’s axis of rotation is not 

perpendicular to the plane of its orbit around the sun, but tilted by 23.5 degrees. 

This tilt means that northern and southern hemispheres receive more or less 

sunlight depending on whether they are tilted toward or away from the sun. 

Seasons depend on the intensity of solar radiation, so the northern summer 

coincides with the southern winter and vice versa. The figures below show 

seasons for the northern hemisphere.
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Figure 1.8 (Top) At the summer solstice the northern hemisphere is tilted 
toward the sun. Summer is the hottest time of year. (Middle top) At 
the autumnal equinox, the sun is directly overhead above the 
equator. In the fall daytime grows shorter, crops ripen, and 
deciduous trees shed leaves. (Middle bottom) At the winter solstice, 
the northern hemisphere is tilted away from the sun. Winter is the 
coldest time of year. Daytime hours are shortest. Plant growth slows 
or stops. (Bottom) At the vernal equinox, the sun is overhead at the 
equator. In spring days lengthen and plants grow.
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What happens to the length of a day as we move from summer into fall 

and then winter? The number of hours of daylight changes over the course of a 

year and by latitude. The axial tilt places the sun directly overhead on the tropic of 

cancer during the noon of the summer solstice (June 21st), our longest day of the 

year in the northern hemisphere. The greater amount of solar radiation reaching 

the northern hemisphere at this time accounts for the warm temperatures of 

summer. Day and night are split equally on the first days of spring and fall 

(equinoxes) when the sun is directly overhead at the equator. The hours of 

daylight increase northward during summer in the northern hemisphere and 

decrease southward in the southern hemisphere (where it is winter). At the north 

pole, the sun rises above the horizon on the spring equinox and does not set until 

the fall equinox 6 months later. Imagine daylight 24 hours per day. This pattern is 

reversed during the winter when the south pole is illuminated for 24 hours and the 

north pole is dark 24 hours per day.

When summer solstice is occurring in the northern hemisphere, what is 

happening in the southern hemisphere? The rays are directly overhead in the 

northern hemisphere and the sun is farthest from the southern hemisphere than at 

any other time of year. Therefore, the suns rays strike the southern hemisphere at 

a low angle and transfer less energy resulting in lower temperatures. Thus, in the 

southern hemisphere, winter occurs in June and summer (with the sun overhead at 

the tropic of capricorn) occurs during our winter solstice, the shortest day of the 

year in the northern hemisphere.

I.4 The Moving Planets

I.4.1 Planet configurations

Extensive observations were carried out by Tycho Brahe, at Uraniborg, 

Denmark, late in the 16th century. Brahe moved to Prague in 1597, and died four 

years later. His results were taken over by an assistant, Johannes Kepler. Let’s 

look briefly at how we survey the Solar System, measuring the periods and sizes 

of orbits. We take advantage of certain geometric arrangements. These are shown 

in Figure 1.9. 
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We first look at planets that are closer to the sun than the earth. When the 

planet is between the earth and the sun, we say that it is at inferior conjunction, 

and it appears too close to the sun in the sky to observe. As the planet moves in its 

orbit, the angle between it and the sun (as seen from earth) becomes larger. The 

planet appears farther and f arther from the sun. Eventually, since its orbit is 

smaller than the earth’s, it reaches a maximum apparent separation from the sun. 

This is called the greatest elongation. At that point, the earth, the sun and the 

planet make a right triangle, with the planet at the right angle. After that the planet 

appears to get closer to the sun, and when it is on the far side it is at superior

conjunction. The pattern then repeats on the other side of the line from the earth to 

the sun. When the planet is on one side of the sun it will appear east of the sun in 

the sky, and when it is on the other side it appears west of the sun. When it is west 

of the sun, it rises and sets before the sun, and it is therefore most easily visible in 

the morning. When it is east of the sun, it rises and sets after the sun, and is most 

easily visible in the evening.

Figure 1.9 Configurations of the Earth and the inner and outer planets. Positions 
of the inner planets are indicated by numbers: (1) inferior 
conjunction, (2) superior conjunction, (3 and 3’) greatest elongation. 
Positions of the outer planets are indicated by letters: (A) opposition, 
(B) conjunction, (C) quadrature.
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We then look at planets that are farther from the sun than the earth. Let’s 

start by looking at the planet when it is farthest from earth, on the far side of the 

sun. We say that the planet is simply at conjunction. At that point, it would be too 

close to the sun in the sky to see. As it moves farther from that position it appears 

farther from the sun on the sky. When it reaches a point where the earth, sun and 

planet make a right triangle, with the Earth at the right angle, we say that it is at 

quadrature. Notice that there is no limit on how far on the sky it can appear to get 

from the sun. Eventually, it reaches the point where it is on the opposite side of 

the sky from the sun. We call this point the opposition, and it is also the closest 

approach of the planet to earth. When the planet is at opposition, it is up at night 

(since it is opposite to the sun in the sky). Therefore, when a planet is favorably 

placed for observing, it is also closest to earth and can be studied in the greatest 

detail.

The maximum (eastern or western) elongation, i. e. the angular distance of 

the planet from the sun is 280 for Mercury and 470 for Venus. Elongations are 

called eastern or western, depending on which side of the sun the planet is seen. 

The planet is an “evening star” and sets after the sun when it is in eastern 

elongation; in western elongation the planet is seen in the morning sky as a 

“morning star”.

When we talk about the orbital period of a planet, we mean the period with 

respect to a fixed reference frame, such as that provided by the stars. This period 

is called the sidereal period of the planet. However, we most easily measure the 

time it takes for the planet, earth and sun to come back to a particular 

configuration. This is called the synodic period. For example, the synodic period 

might be the time from one opposition to the next. How do we determine the 

sidereal period from the synodic period? 

Suppose we have two planets, with planet 1 being closer to the Sun than 

planet 2 (for simplicity, we assume circular orbits). The angular speed 1 of 

planet 1 is therefore greater than that of planet 2, 2. The relative angular speed is 

given by,

1 2relative    ……….(1.6)
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Since 2
P

  , where P is the period of the planet, the period of the relative 

motion of the two planets, Prelative, is related to P1 and P2 by,

1 2

1 1 1

relativeP P P
  ……….(1.7)

Now we let one of the planets be the earth, and express the periods in 

years. First we look at the earth plus an inner planet. This means that P1 is the 

period of the planet and P2 is 1 year. Equation (1.7) then becomes,

1

1 1
1

relativeP P
  ……….(1.8)

Similarly for the earth and an outer planet, equation (1.7) becomes,

2

1 1
1

relativeP P
  ………(1.9)

In each case Prelative is the synodic period and P1 or P2 is the sidereal period.

We now look at how the sizes of various planetary orbits are determined. 

The technique is different for planets closer to the sun than the earth and farther 

from the sun than the earth. Figure 1.10 shows the situation for a planet closer to 

the sun. When the planet is at its greatest elongation, it appears farthest from the 

sun. The planet is then at the vertex of a right triangle, as shown in the figure. 

Since we can measure the angle E between the sun and the planet, we can use the 

right triangle to write,

1
rsinE AU ……….(1.10)

where r is the distance from the planet to the sun. This equation can be solved for 

r to give us the distance to the planet, measured in astronomical units.

Methods like this gives us distances in terms of the astronomical unit. 

Even if we don’t know how large the AU is, we can still have all of the distances 

on the same scale, so we can talk about the relative separations of the planets. The 

current best measurement of the AU comes from situations like Figure 1.10. We 

can now bounce radar signals off planets, such as Venus. By measuring the round-

trip time for the radar signal (which travels at the speed of light), we know very 
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precisely how far the planet is from the earth. The right triangle in Figure 1.10

gives us,

1
dcosE AU ……….(1.11)

Since E is measured and d is known from the radar measurements, the value of the 

astronomical unit can be found. This distance is approximately 150 million 

kilometers. The exact value is accurate to within a few centimeters.

Figure 1.10 Diagram for finding the distance to an inner planet.

It is more complicated to find the distance to an outer planet. There are 

two different methods. The easier one was derived by Copernicus, but is not good 

for tracing out the full orbit. It just gives the distance of the planet from the Sun at 

one point in its orbit. Kepler’s method of tracing the whole orbit is shown in 

Figure 1.11. We make two observations of the planet, one sidereal period of the 

outer planet apart. The earth is at E1 and E2, respectively, when these are made. 

The angles 1and 2 are directly determined. The angles θ1 and θ2 are known, as 

well as the distance x (If the earth’s orbit were circular, then θ1 = θ2). We then 

know 1 – θ1 and 2 – θ2, and can find d1 and d2, and, finally, r. The advantage of 
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this method is that each point in the planet’s orbit can be traced, with the 

observations overlapping in time.

Figure 1.11 Diagram for finding the distance to an outer planet.

The angle sun–planet–earth is called the phase angle, often denoted by the 

Greek letter α. The phase angle is between 00 and 1800 in the case of Mercury and 

Venus. This means that we can see “full Venus”, “half Venus”, and so on, exactly 

as in the phases of the moon. The phase angle range for the superior planets is 

more limited. For Mars the maximum phase is 410, for Jupiter 110, and for 

Neptune only 20.

I.4.2 Retrograde motion

When we look at the night sky, it is clear that most of the objects maintain 

their relative positions. These are the stars. However, apart from the sun and 

moon, a small number of objects move against the background of fixed stars. 

These are the planets. The study of the motions of the planets has occupied 

astronomers for centuries. These motions do not appear simple. The planets 

occasionally seem to double back along their paths, as shown in Figure 1.12. This 

doubling back is known as retrograde motion. Historically, any explanation of the 

motions of the planets had to include an explanation of this retrograde motion. 
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Figure 1.12 Apparent motion of Mars during the 1995 opposition.

The earliest models of our planetary system placed the earth at the center. 

This idea was supported by Aristotle in approximately 350 BC. His view was that 

the planets, the sun and the moon move in circular orbits about the earth. Even 

though there is now ample evidence against this picture, one can see how placing 

the earth at the center was a naturally simplifying assumption. The picture was 

modified by Claudius Ptolemy, in Alexandria, Egypt, around 140 AD. In order to 

explain retrograde motion, he added additional circles, called epicycles. As shown 

in Figure 1.13, each planet was supposed to move around its epicycle as the 

center of the epicycle orbits the earth. To obtain a closer fit to the observed 

motions, higher order epicycles were added.
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Figure 1.13 In this picture, the earth is at the center. The planet, P, 
doesn’t simply orbit the earth. It goes around in a 
circle, which in turn orbits the earth. If the planet’s 
motion along the epicycle is faster than the epicycle’s 
motion around the earth, then the planet can appear to 
go backward for parts of each orbit. More layers of 
epicycles can be added to this picture.

An opposing picture was supported by the 16th century Polish astronomer, 

Nicholas Copernicus. In the Copernican system, the sun is at the center of the 

planetary system. This picture is therefore called the heliocentric model. 

Copernicus showed that the retrograde motion is an artifact, caused by the motion 

of the earth. This is illustrated in Figure 1.14. The Copernican system had the 

planets in circular orbits, not ellipses. Therefore, detailed predictions of planetary 

positions had small errors. To correct those errors, epicycles had to be added to 

the Copernican model, taking away from the simplicity of the picture.

When Galileo Galilei turned his newly invented telescope to the planets, 

he found that Venus does not appear as a perfect disk. It goes through a series of 

phases, similar to those of the moon. The size of the disk also changes as the 

phase changes. These observations can be explained easily in the heliocentric 

model, because Venus would not always be at the same distance from earth. The 
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phases result from the fact that we see differing amounts of the illuminated 

surface. There was no similar explanation in the earth-centered system. Though 

Galileo was persecuted for holding that the heliocentric picture is the true one, his 

work had great influence on future scientific thought. Work switched from trying 

to find what was at the center of the planetary system to trying to understand how 

the planets, the earth included, move around the Sun.

Figure 1.14 Retrograde motion in the heliocentric system. (a) The 
sun is at the center. We consider the earth at five 
positions E1 through E5 with the planet at P1 through P5

at the same times.We use the line of sight from the sun 
through E3 and P3 as a reference direction.The dashed 
lines are all parallel to that direction, and the angles θ1

through θ5 keep track of the differences between the 
line of sight from earth to the planet and the reference 
direction.We see that since the earth is moving faster 
than the planet, the line of sight goes from being ahead 
of the dashed line to being behind the dashed line. (b)
The view from earth. The apparent position of the 
planet on the sky is indicated by P’1 through P’5. 
During this part of their orbits the planets appears to 
move backward on the sky.
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TIME AND THE SUN

Procedure:
Plotting an Analemma

1. The second column of Solar Noon Data table shows 
the latitude on Earth where the sun is directly 
overhead at solar noon on each date. Complete the 
third column by determining how far away you are 
from each location. For locations south of the equator 
add that latitude to your latitude. For locations north 
of the equator subtract that latitude from your latitude. 
For example, if you are at 400 N latitude on January 10, 
you are 400 + 22.10, or 62.10, from the location where 
the sun is overhead on January 10.

2. Your angular distance from the latitude where the sun 
is overhead is the same as the difference of the local 
sun’s altitude from 900 altitude. Using January 10 
again, if you are at 400 N and are thus 62.10 from the 
overhead sun, the sun’s altitude is 90° – 62.10, or 27.90. 
Using your latitude, complete the fourth column of the 
Solar Noon Data table.

3. For each date, graph the clock time at solar noon 
versus the altitude of the sun at solar noon. Label the 
points that represent the 20th day of each month. 
Connect the points in chronological order with a 
smooth curve (1st graph).

4. Now, try to find declination of the Sun for each date 
using planetarium software such as SkyGazer. Graph 
the difference of clock time and solar time versus 
declination of the Sun (2nd graph).

Astronomy Laboratory Lab Skills and 
Objectives

 Graph an analemma
 Compare the 

altitude of the sun 
on different dates

 Identify the seasons
during which solar 
time is ahead of and 
behind clock time
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Analysis and Conclusions

1. Based on your analemma, is the sun ever overhead at your latitude?

2. On your analemma, what is the maximum altitude of the sun? On what date does this 

maximum altitude occur?

3. On the date you gave in Question 2, at what latitude was the sun directly overhead at solar 

noon? What is the name of the imaginary circle around Earth very near this latitude? What 

season begins in the Northern Hemisphere on the this date?

4. On your analemma, what is the minimum altitude of the sun? On what date does the minimum 

altitude occur?

5. On the date you gave for Question 4, at what latitude was the sun directly overhead at solar 

noon? What is the name of the imaginary circle around Earth close to this latitude? What 

season begins in the Northern Hemisphere on this date?

6. Find the two dates when the sun is overhead closest to the equator at solar noon. Name the 

seasons that begin near each of these dates.

7. On your analemma, find the dates you listed for Question 6. How does apparent solar time 

relate to the clock time on these dates?

8. During which two seasons is apparent solar time ahead of clock time? During which two 

seasons is apparent solar time behind clock time?
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