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II.1 Newton’s Law of Universal Gravitation

In 1687 Newton published his work on the law of gravity in his treatise 

Mathematical Principles of Natural Philosophy. Newton’s law of universal 

gravitation states that “every particle in the Universe attracts every other particle 

with a force that is directly proportional to the product of their masses and 

inversely proportional to the square of the distance between them”.

If the particles have masses m1 and m2 and are separated by a distance r, 

the magnitude of this gravitational force is

1 2
g 2

m m
F G

r
 ……….(2.1)

where G is a constant, called the universal gravitational constant, that has been 

measured experimentally. Its value in SI units is G = 6.67x10-11 Nm2kg-2. The 

form of the force law given by equation (2.1) is often referred to as an 

inversesquare law because the magnitude of the force varies as the inverse square 

of the separation of the particles.

In formulating his law of universal gravitation, Newton used the following 

reasoning, which supports the assumption that the gravitational force is 

proportional to the inverse square of the separation between the two interacting 

objects. He compared the acceleration of the Moon in its orbit with the 

acceleration of an object falling near the Earth’s surface, such as the legendary 

apple (see Figure 2.1). Assuming that both accelerations had the same cause—

namely, the gravitational attraction of the Earth—Newton used the inverse-square 

law to reason that the acceleration of the Moon toward the Earth (centripetal 

acceleration) should be proportional to 2
M

1
r

, where rM is the distance between the 

centres of the Earth and the Moon.  Furthermore, the acceleration of the apple 

toward the Earth should be proportional to 2
a

1
R

, where Ra is the distance between 

the centres of the Earth and the apple. Because the apple is located at the surface 

Ra = RE , the radius of the Earth. Using the values rM = 3.84x108 m 

and RE = 6.37x106 m, Newton predicted that the ratio of the Moon’s acceleration 

aM to the apple’s acceleration g would be
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Figure 2.1 As it revolves around the Earth, the Moon experiences a centripetal 
acceleration aM directed toward the Earth. An object near the Earth’s 
surface, such as the apple shown here, experiences an acceleration g.
(Dimensions are not to scale.)
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If we substitute for RE and rM with their value, giving us 2.75x10-4. Therefore, the 

centripetal acceleration of the Moon, aM, is: (2.75x10-4)(9.80 ms-2) = 2.70x10-3

ms-2. 

Newton also calculated the centripetal acceleration of the Moon from a 

knowledge of its mean distance from the Earth and the known value of its orbital 

period, T = 27.32 days = 2.36x106 s. In a time interval T, the Moon travels a 

distance 2rM, which equals the circumference of its orbit. Therefore, its orbital 

speed is 2rM /T and its centripetal acceleration is
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Again, when we substitute for rM and T with their value, giving us 2.72x10-3 ms-2.

The nearly perfect agreement between this value and the value Newton obtained 

using g provides strong evidence of the inverse-square nature of the gravitational 

force law.
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II.1.1 Measuring gravitational constant

The universal gravitational constant G was measured in an important 

experiment by Henry Cavendish (1731–1810) in 1798. The Cavendish apparatus 

consists of two small spheres, each of mass m, fixed to the ends of a light 

horizontal rod suspended by a fine fiber or thin metal wire, as illustrated in Figure 

2.2. When two large spheres, each of mass M, are placed near the smaller ones, 

the attractive force between smaller and larger spheres causes the rod to rotate and 

twist the wire suspension to a new equilibrium orientation. The angle of rotation is 

measured by the deflection of a light beam reflected from a mirror attached to the 

vertical suspension. The deflection of the light beam is an effective technique for 

amplifying the motion. The experiment is carefully repeated with different masses 

at various separations. In addition to providing a value for G, the results show 

experimentally that the force is attractive, proportional to the product mM, and 

inversely proportional to the square of the distance r.

Figure 2.2 Cavendish apparatus for measuring G. The dashed line 
represents the original position of the rod.



   Table 1. The dependant of g on altitude. 
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II.1.2 Free-fall acceleration and the gravitational force

When defining mg as the weight of an object of mass m, we refer to g as 

the magnitude of the free-fall acceleration. Now we are in a position to obtain a 

more fundamental description of g. Because the magnitude of the force acting on 

a freely falling object of mass m near the Earth’s surface is given by equation 

(2.1), we can equate mg to this force to obtain

E
2
E

E
2
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


……….(2.4)

Now consider an object of mass m located a distance h above the Earth’s 

surface or a distance r from the Earth’s centre, where r = RE + h. The magnitude 

of the gravitational force acting on this object is

 
E E

g 22
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r R h
 


……….(2.5)

The magnitude of the gravitational force acting on the object at this position is 

also Fg = mg, where g is the value of the free-fall acceleration at the altitude h. 

Substituting this expression for Fg into the last equation shows that g is

 
E E

22

E

M M
g G G

r R h
 


……….(2.6)

Thus, it follows that g decreases with increasing altitude. Because the weight of 

an object is mg, we see that as r  , its weight approaches zero.
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II.2 Energy Considerations in Planetary and Satellite Motion

II.2.1Orbital energy

Consider an object of mass m moving with a speed v in the vicinity of a 

massive object of mass M, where M >> m (see Figure 2.3). The system might be a 

planet moving around the Sun, a satellite in orbit around the Earth, or a comet 

making a one-time flyby of the Sun. If we assume that the object of mass M is at 

rest in an inertial reference frame, then the total mechanical energy E of the two-

object system when the objects are separated by a distance r is the sum of the 

kinetic energy of the object of mass m and the potential energy of the system, 

given by

21
2

E K U

Mm
E mv G

r

 

 
……….(2.7)

This equation shows that E may be positive, negative, or zero, depending on the 

value of v. However, for a bound system, such as the Earth–Sun system, E is 

necessarily less than zero because we have chosen the convention that U  0 as r 

.

Example:

Problem The International Space Station operates at an altitude of 350 
km. When final construction is completed, it will have a weight (measured 
at the Earth’s surface) of 4.22x106 N. What is its weight when in orbit?

Answer We first find the mass of the space station from its weight at the 
surface of the Earth: m = Fg/g = 4.31x105 kg

We use equation (2.6) to find g = 8.83 ms-2

Using the value of g at the location of the station, the station’s weight in 
orbit is: Fg = mg = 3.80x106 N. This value is smaller than the value at the 
Earth’s surface which is 4.22x106 N.
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Figure 2.3 An object of mass m moving in a circular orbit 
about a much larger object of mass M.

We can easily establish that E < 0 for the system consisting of an object of mass m 

moving in a circular orbit about an object of mass M >> m. Newton’s second law 

applied to the object of mass m gives

2

2

Mm v
G ma m

r r
 

Multiplying both sides by r and dividing by 2 and then substituting this into 

equation (2.7), we obtain

Mm Mm
E G G

2r r
Mm

E G
2r

 

 
……….(2.8)

This result clearly shows that the total mechanical energy is negative in the 

case of circular orbits. Note that the kinetic energy is positive and equal to half the 

absolute value of the potential energy. The absolute value of E is also equal to the 

binding energy of the system, because this amount of energy must be provided to 

the system to move the two objects infinitely far apart. The total mechanical 

energy is also negative in the case of elliptical orbits. The expression for E for 

elliptical orbits is the same as equation (2.8) with r replaced by the semimajor 

axis length a:
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  ……….(2.9)

Furthermore, the total energy is constant if we assume that the system is 

isolated. Therefore, as the object of mass m moves from, say, A to B, the total 

energy remains constant and equation (2.7) gives

2 21 1
2 A 2 B

A B
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E mv G mv G

r r
    ……….(2.10)

or
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II.2.2 Escape speed

Suppose an object of mass m is projected vertically upward from the 

Earth’s surface with an initial speed vi , as illustrated in Figure 2.4. We can use 

energy considerations to find the minimum value of the initial speed needed to 

allow the object to move infinitely far away from the Earth. Equation (2.7) gives 

the total energy of the system at any point. At the surface of the Earth, v = vi and r 

Example:

Problem The space shuttle releases a 470-kg communications satellite 
while in an orbit 280 km above the surface of the Earth. A rocket engine 
on the satellite boosts it into a geosynchronous orbit (4.23x104 km from 
the centre of the Earth), which is an orbit in which the satellite stays 
directly over a single location on the Earth. How much energy does the 
engine have to provide?

Answer We first determine the initial orbital radius (not the altitude 
above the Earth’s surface): rA = RE + h = 6.65x105 m

The energy required from the engine to boost the satellite from its initial 
to final position is calculated using equation (2.11). The result is: 
1.19x1010 J (actually, we must account for the changing mass of the 
spacecraft as it ejects burned fuel, something we have not done here).
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= ri = RE . When the object reaches its maximum altitude, v = vf = 0 and r = rf = 

rmax. Because the total energy of the system is constant, substituting these 

conditions into equation (2.7) gives

2 E E1
2 i

E max

M m M m
mv G G

R r
  

Solving for vi
2 gives

2
i E

E max

1 1
v 2GM m

R r

 
  

 
……….(2.12)

We are now in a position to calculate escape speed, which is the minimum 

speed the object must have at the Earth’s surface in order to approach an infinite 

separation distance from the Earth. Traveling at this minimum speed, the object 

continues to move farther and farther away from the Earth as its speed 

asymptotically approaches zero. Letting rmax   in equation (2.12) and taking vi

= vesc, we obtain

E
esc

E

2GM
v

R
 ……….(2.13)

Figure 2.4 An object of mass m projected upward 
from the Earth’s surface with an initial 
speed vi reaches a maximum altitude h.
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Note that this expression for vesc is independent of the mass of the object. In other 

words, a spacecraft has the same escape speed as a molecule. Furthermore, the 

result is independent of the direction of the velocity and ignores air resistance.

If the object is given an initial speed equal to vesc, the total energy of the 

system is equal to zero. This can be seen by noting that when r  , the object’s 

kinetic energy and the potential energy of the system are both zero. If vi is greater 

than vesc, the total energy of the system is greater than zero and the object has 

some residual kinetic energy as r .

II.3 Tidal Force

A number of phenomena on Earth depend on the fact that the gravitational 

force exerted by the Moon (or the Sun) on the Earth is slightly different at 

different parts of the Earth. Any effect which depends on the difference between 

the gravitational forces on opposite sides on an object is called a tidal effect.

If we have an object of mass m with radius r, a distance d from an object 

of mass M, the gravitational attraction on the object of mass m at the point on the 

closest to M is

Example:

Problem Calculate the escape speed from the Earth for a 5,000-kg 
spacecraft, and determine the kinetic energy it must have at the Earth’s 
surface in order to move infinitely far away from the Earth.

Answer We use equation (2.13) to find the escape speed:

4 1E
esc

E

2GM
v 1.12 10 ms

R
  

The kinetic energy of the spacecraft is

2 111
2 escK mv 3.14 10 J  
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while the point farthest from M feels a gravitational attraction of

 g 2
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



The near point is being pulled more strongly toward M, while the far point is 

being pulled less strongly, than the centre. Relative to the centre, the near point is 

pulled toward M, while the far point is pushed away from M. The difference 

between these forces relative to the centre is the tidal force, those are

tides 3

2GMmr
F ( / )

d
   ……….(2.14)

Tidal forces are responsible for many effects in our solar system, from changing 

sea levels to geological activity on, and the ultimate fate of, distant moons.

Now let’s consider the Earth–Moon system. If Earth were rotating at the 

same rate as the Moon’s orbital period, the bulge would point straight at the Moon 

as illustrated in Figure 2.5 (left). However, the Earth is rotating considerably 

faster than the Moon’s orbital period, and the bulge, which can’t move as quickly, 

is pushed ahead, and points ahead of the Moon’s position (Figure 2.5 (centre)). 

The Moon’s gravity “pulls back” on the advanced bulge (Figure 2.5 (right)).

Figure 2.5 Tidal force on Earth–Moon system.

This backward torque gradually slows the rotation of the earth. To 

conserve the angular momentum of the system, the radius of the Moon’s orbit 

gradually increases. If the Earth were rotating more slowly than the Moon’s orbit, 

the bulge would lag behind the connecting line, and the Moon would be gradually 
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speeding up the Earth’s rotation, and moving closer to conserve angular 

momentum.

II.3.1 The effects of tidal force

II.3.1.1 tides on earth

The tidal bulge, when it is over an ocean, presents itself as a rise in sea 

level. A 90° later in revolution, when the bulge is at right angle to the ocean, a 

reduced sea level is experienced.

The Moon is not alone in pulling on the Earth. The distant Sun is so 

massive that it also exerts a significant tidal force, about half the strength of the 

Moon’s. When the Earth, Moon, and Sun are in a straight line (Full Moon and 

New Moon), the Sun’s effect is added to the Moon’s, creating the highest tides, 

called Spring Tides. At Quadrature, when the Sun and Moon form a 90° angle 

with Earth, the Sun’s effect is minimized, and the lowest tides, Neap Tides, occur.

II.3.1.2 resonances

Tidal forces cause the rotations and orbits of bodies to be synchronized in 

integer ratios. The most evident case is Synchronous Rotation, where a satellite 

rotates at the same rate as its orbital period, keeping the same face toward its 

parent. All large satellites in our solar system, including our Moon, do this. 

Above, we discussed the slowing of Earth’s orbit by the Moon pulling on the 

advanced tidal bulge. In the distant past, when the Moon was rotating at some 

other speed, Earth would have had the same effect on the Moon, slowing or 

speeding its rotation until it reached a rotational speed where the bulge precisely 

faced the Earth.

Higher-Order Resonances also occur in the solar system. For example, the 

orbits of Io, Europa, and Ganymede are in a 1:2:4 resonance. Relationships such 

as these result from interaction of the bodies' gravitational forces on one another.
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II.3.1.3 tidal heating

Tidal forces can also internally heat a satellite. Satellites rotate at a 

constant speed but, in an eccentric orbit, the orbital speed varies with the distance 

from the primary (Kepler’s 2nd law). Thus the tidal bulge of a tidally locked 

satellite cannot always point precisely at its primary. At some points in the orbit, 

the bulge will be pointed ahead of or behind where it should be, and the primary 

will be exerting a small pull on the bulge. The friction of the bulge being pulled 

back and forth through the solid body of the satellite heats the interior of the body.

Io is an extreme example of tidal heating. While Io’s orbit is nearly 

circular, it frequently encounters Europa and Ganymede, causing temporary 

changes in the tidal forces it feels, moving the tidal bulge around the planet. In the 

Jupiter’s intense gravity the friction is significant, and they predicted Io should be 

hot enough for Volcanism. Unmanned spacecraft, Voyager-1, photographed active

volcanoes on Io, and we now know it to be the most volcanically active object in 

the solar system, with internal temperatures of 2,000 K. Tidal heating is also 

probably responsible for keeping the interior of Europa warm enough for the 

liquid water that is suspected to exist below the ice surface, and tidal resonance 

with Saturn’s Dione is thought to power volcanism on Enceladus.

II.3.1.4 the roche limit

In 1848, Astronomer Edouard Roche noted that, if a satellite was held 

together mainly by its own gravitational attraction, there would be a minimum 

distance from the primary inside which the tidal forces of the primary would 

exceed the satellite’s binding forces and would tear it apart.

The Roche Limit for two bodies is approximated by a function of their

densities, :

1

3
planet

L
satellite

R 2.456R
 

   
..........(2.15)

where R is the planet’s radius, and the  values are the densities. For typical 

satellites, a common approximation is that the Roche Limit is 2.5 times the radius 

of the primary planet.
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The Roche Limit applies only to fluid bodies held together entirely by 

gravitation. Small satellites and moons can survive inside their primary’s Roche 

Limit because their electrochemical bonds are more significant than their 

gravitational bonds. For small rocky satellites, the Roche Limit is approximated as 

1.44 primary radii.

II.3.1.5 rings and satellites

All large satellites in the solar system orbit outside their planet’s Roche 

Limit. Small rocky satellites (usually under 100 km in diameter) can exist inside 

the Roche Limit, and there are examples of this with satellites of Jupiter, Uranus, 

and Neptune. All the Jovian planets are now known to have rings, all inside their 

primary’s Roche Limit, when the Roche calculations for a relatively diffuse body 

are used.

Saturn’s rings composed of small particles, and Roche suggested they 

were a former satellite that broke up because it was inside the Roche Limit. 

However, tidal forces would have prevented a satellite from forming in the first 

place, so a mechanism to form a satellite elsewhere and then move it inside the 

limit was needed. It is possible that a separate object was captured by Saturn’s 

gravity and pulled inside the Roche Limit, where it was destroyed (as happened 

with comet Shoemaker-Levy 9 at Jupiter), or that a moon, originally further out, 

spiralled into the planet through tidal interactions (as is happening with Phobos 

and Triton).

An alternate theory is that the rings consist of original material from the 

solar nebula, prevented by tidal forces from ever becoming a satellite. In this case, 

a mechanism is needed to explain the sharp boundaries of the ring systems, and 

why they have not become diffuse with time. Shepherding effects of small nearby 

satellites are the proposed solution to the sharp boundaries, and replenishment of 

the rings with dust stripped off satellites could keep them from fading with time. 

Photographs of unmanned spacecraft module, Galileo, from 1996–1997 show dust 

being pulled off Amalthea and Thebe and into the rings of Jupiter, supporting this 

theory.



170) in the second century A.D. and was accepted for the next 1,400 years. In 

1994. This event showed that theories of stray objects being destroyed and 
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II.3.1.6 catastrophic events

Finally, occasional extraordinary events serve to demonstrate the power of 

tidal forces. Neptune’s moon Triton is due for such an event. Like all retrograde 

satellites, its orbit is decaying, and it will fall below Neptune’s Roche limit and be 

destroyed in 100 million to 1 billion years.

More recently, when comet Shoemaker-Levy 9 was discovered in 1993, it 

had already broken up into more than twenty pieces when it passed within 21,000 

km of Jupiter (Jupiter’s Roche limit is 175,000 km, so the tidal stresses at 21,000 

would have been enormous.) The pieces spiralled in to impact the planet in July 

contributing to planetary evolution are credible.

II.4 Kepler’s Law and the Motion of Planets

People have observed the movements of the planets, stars, and other 

celestial objects for thousands of years. In early history, scientists regarded the 

Earth as the center of the Universe. This so-called geocentric model was 

elaborated and formalized by the Greek astronomer Claudius Ptolemy (c. 100–c. 

1543 the Polish astronomer Nicolaus Copernicus (1473–1543) suggested that the 

Earth and the other planets revolved in circular orbits around the Sun (the 

heliocentric model).

The Danish astronomer Tycho Brahe (1546–1601) wanted to determine 

how the heavens were constructed, and thus he developed a program to determine 

the positions of both stars and planets. It is interesting to note that those 

observations of the planets and 777 stars visible to the naked eye were carried out 

with only a large sextant and a compass (the telescope had not yet been invented).

The German astronomer Johannes Kepler was Brahe’s assistant for a short 

while before Brahe’s death, whereupon he acquired his mentor’s astronomical 

data and spent 16 years trying to deduce a mathematical model for the motion of 

the planets. Such data are difficult to sort out because the Earth is also in motion 

around the Sun. After many laborious calculations, Kepler found that Brahe’s data 
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on the revolution of Mars around the Sun provided the answer. Kepler’s complete 

analysis of planetary motion is summarized in three statements known as 

Kepler’s laws:

II.4.1 Kepler’s first law

Figure 2.6 shows the geometry of an ellipse, which serves as our model 

for the elliptical orbit of a planet. An ellipse is mathematically defined by 

choosing two points F1 and F2, each of which is a called a focus, and then drawing 

a curve through points for which the sum of the distances r1 and r2 from F1 and 

F2, respectively, is a constant. The longest distance through the center between 

points on the ellipse (and passing through both foci) is called the major axis, and 

this distance is 2a. In Figure 2.6, the major axis is drawn along the x direction. 

The distance a is called the semimajor axis. Similarly, the shortest distance 

through the center between points on the ellipse is called the minor axis of length 

2b, where the distance b is the semiminor axis. Either focus of the ellipse is 

located at a distance c from the center of the ellipse, where a2 = b2 + c2. In the 

elliptical orbit of a planet around the Sun, the Sun is at one focus of the ellipse. 

There is nothing at the other focus.

The eccentricity of an ellipse is defined as e = c/a and describes the 

general shape of the ellipse. For a circle, c = 0, and the eccentricity is therefore 

zero. The smaller b is than a, the shorter the ellipse is along the y direction 

compared to its extent in the x direction in Figure 2.6. As b decreases, c increases, 

and the eccentricity e increases.

1. All planets move in elliptical orbits with the Sun at one focus.
2. The  radius  vector  drawn  from the Sun to a planet sweeps out equal  
    areas in equal time intervals.
3. The square of  the  orbital  period of any planet is proportional to the 
    cube of the semimajor axis of the elliptical orbit.
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Figure 2.6 Plot of an ellipse. The semimajor axis has length 
a, and the semiminor axis has length b. Each 
focus is located at a distance c from the center on 
each side of the center.

Now imagine a planet in an elliptical orbit such as that shown in Figure 

2.6, with the Sun at focus F2. When the planet is at the far left in the diagram, the 

distance between the planet and the Sun is a + c. This point is called the aphelion, 

where the planet is the farthest away from the Sun that it can be in the orbit. (For 

an object in orbit around the Earth, this point is called the apogee). Conversely, 

when the planet is at the right end of the ellipse, the point is called the perihelion 

(for an Earth orbit, the perigee), and the distance between the planet and the Sun 

is a – c.  

Kepler’s first law is a direct result of the inverse square nature of the 

gravitational force. Circular and elliptical orbits are the allowed shapes of orbits 

for objects that are bound to the gravitational force center. These objects include

planets, asteroids, and comets that move repeatedly around the Sun, as well as 

moons orbiting a planet. There could also be unbound objects, such as a 

meteoroid from deep space that might pass by the Sun once and then never return. 

The gravitational force between the Sun and these objects also varies as the 
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inverse square of the separation distance, and the allowed paths for these objects 

include parabolas (e = 1) and hyperbolas (e > 1).

II.4.2 Kepler’s second law

Kepler’s second law can be shown to be a consequence of angular 

momentum conservation as follows. Consider a planet of mass MP moving about 

the Sun in an elliptical orbit (see Figure 2.7a). Let us consider the planet as a 

system. We will model the Sun to be so much more massive than the planet that 

the Sun does not move. The gravitational force acting on the planet is a central 

force, always along the radius vector, directed toward the Sun. The torque on the 

planet due to this central force is clearly zero, because F is parallel to r. That is

r F 0   

Recall that the external net torque on a system equals the time rate of 

change of angular momentum of the system; that is,  = dL/dt. Therefore, because 

 = 0, the angular momentum L of the planet is a constant of the motion:

pL r p M r v constant    

We can relate this result to the following geometric consideration. In a time 

interval dt, the radius vector r in Figure 2.7b sweeps out the area dA, which 

equals half the area r dr of the parallelogram formed by the vectors r and dr. 

Because the displacement of the planet in the time interval dt is given by dr = vdt, 

we have

1 1
2 2

P

P

L
dA r dr r vdt dt

2M

dA L
constant

dt 2M

    

 
……….(2.16)

where L and MP are both constants. Thus, we conclude that the radius vector from 

the Sun to any planet sweeps out equal areas in equal times.
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II.4.3 Kepler’s third law

It is informative to show that Kepler’s third law can be predicted from the 

inversesquare law for circular orbits. Consider a planet of mass MP that is 

assumed to be moving about the Sun (mass MS) in a circular orbit, as in Figure 

2.8. Because the gravitational force provides the centripetal acceleration of the 

planet as it moves in a circle, we use Newton’s second law for a particle in  

uniform circular motion.

Figure 2.7 (a) The gravitational force acting on a 
planet is directed toward the Sun. (b) As 
a planet orbits the Sun, the area swept 
out by the radius vector in a time 
interval dt is equal to half the area of the 
parallelogram formed by the vectors r
and dr = vdt.

Figure 2.8 A planet of mass MP moving 
in a circular orbit around the 
Sun. The orbits of all planets
except Mercury are nearly 
circular.
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We process as follows,
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The last line in the above process is also valid for elliptical orbits if we replace r 

with the length a of the semimajor axis, 

 
2

2 3 3

S

4
T a constant a

GM

 
  
 

……….(2.17)

Equation (2.17) is Kepler’s third law. Because the semimajor axis of a 

circular orbit is its radius, equation (2.17) is valid for both circular and elliptical 

orbits. Note that the constant of proportionality KS is independent of the mass of 

the planet. Equation (2.17) is therefore valid for any planet. If we were to consider 

the orbit of a satellite such as the Moon about the Earth, then the constant would 

have a different value, with the Sun’s mass replaced by the Earth’s mass.

Example:

Problem Calculate the mass of the Sun using the fact that the period of the 
Earth’s orbit around the Sun is 3.156x107 s and its distance from the Sun is 
1.496x1011 m.

Answer We use equation (2.17) to find the mass of the Sun:

MS = (42r3)/(GT2) = 1.99x1030 kg
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THE MASS OF JUPITER

Procedure:

You are going to use software from CLEA Project: The 
revolution of the moons of jupiter to do this laboratory 
activity.

1. Start-up
Double-click on the icon Jupiter's Moons. 
After the program is activated it will request a Start 
Date and Time for your observing session. Your Start 
Date and Time can be obtained from your TA.

2. The Telescope Field of View and Readouts
After you have entered this information into the 
computer, it will point the telescope at Jupiter and 
provide a display similar to that shown below. 
Jupiter is displayed in the center of the screen. To 
either side are the Galilean moons. Even at high 
magnifications they appear only as points of light 
with no visible surface. 

The date and the Universal Time are displayed in the 
lower left corner. There is also a number labeled JD, 
which stands for Julian Day. This is the number of 
days (and fractions of days) since noon on Jan 1, 
4713 BC, and is the standard system astronomers use 
to record and communicate dates. 

There are four buttons on the screen marked 100x, 
200x, 300x and 400x. The magnification of the 
telescope can be controlled by clicking these buttons. 
Try clicking on them to see how it changes the view. 
The current telescope magnification is shown at the 
upper left corner. 

The "Next" button steps ahead one time interval. To 
end your observing session, select QUIT from the File 
menu. You cannot continue where you left off if you 
QUIT the program.

3. Position Measurement
In order to measure a moon's position, move the 
cursor into the telescope field of view, then press and 
hold the mouse button. The cursor becomes a cross 
and the measurement software is activated. Carefully 
center the cross on a moon and read the value next to 
the lower 'X' in the lower righthand corner. The 
number is the distance of the cursor from the center 
of Jupiter, measured in JuD (to make sure that you 
are clear on this, check that the edge of Jupiter is 0.5 
JuD). The direction of the moon is given by an E or W 
for east and west.

Lab Skills and 
Objectives

Astronomy Laboratory Lab Skills and 
Objectives

 Be able to 
determine the mass 
of Jupiter by 
measuring the 
orbital properties of 
Jupiter’s moons and 
analyzing their 
motions using 
Kepler’s third law
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Sometimes a moon will be "missing". In this case, first go to the lowest magnification 
and largest field of view. If you don't see four moons, then go to the highest power to 
see if one is in front of Jupiter (this is called a transit). If the missing moon is not in front 
of Jupiter, it must be behind the planet. In this case, record its distance as zero. Of 
course, this measurement could be in error by as much as 0.5 JuD. Once you have 
measured the positions of all four moons, click "Next" to advance in time by one time 
step.

4. Recording Data
In this lab your data are your position measurements for the moons. On this page is a 
table for recording your data. Record your observations as follows: 

Column 1: Write down the Julian Day. Since you likely will not be observing for more 
than a year in time, you can just record the last few digits. For example you could put 
down 9883.43 instead of 2449883.43 to save some writing. 

Columns 2 through 5: Record each moon's position, in the order that you see them from 
east to west (left to right). Remember to specify if they are east (left) or west (right) of 
Jupiter. For example, you could write 2.21W to mean one moon was 2.21 JuD west 
(right) of Jupiter's center.

5. Data Presentation – Graphical
More often than not, the graphical display of data makes trends and correlations readily 
apparent. Often the basis of a discovery is simply recognizing what to plot against what! 
Given the data in this lab the proper plot is evidently the position of each moon versus 
time, specifically Julian Date. The number of days since the first observation is along the 
x-axis and distance from Jupiter is along the y-axis.
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6. Identifying Moons, and Determining Orbital Periods and Semi-Major Axes
Before you can determine the periods and semi-major axes of the moons' orbits, you 
need to figure out which measurement goes with which moon at any given time. Since 
nature doesn't label the moons for us, this can only be done by looking for patterns in 
the data. Fortunately, the orbits of the Galilean moons are circular so that the path of 
each moon in your graph of position versus time will look like a sine curve. For any one 
moon the sine curve will be symmetric, with all maxima and minima the same distance 
from 0.

Now you can derive the essential quantities -period P and semi-major axis a -from your 
observations, and from them derive the mass of Jupiter. For each moon you will have a 
curve something like the sine curve. The semi-major axis of the orbit is given by the 
maximum distance from Jupiter at which you observed the moon. Equivalently, the 
semi-major axis is given by the maximum or minimum value of your sine curve. Of 
course, since your measures are in JuD, so will be your value for the semi-major axis of 
the orbit. 

Finally, your measures are in days and JuD, while Kepler’s Third Law requires years and 
AU. To  convert your period in days to a period in years, simply divide by 365.25 days in 
a year. To convert your semi-major axis in JuD to a semi-major axis in AU, divide by 
1050 Jupiter diameters in an AU.

7. Determining the Mass of Jupiter – Four Times!
Use the Kepler’s third law to obtain the mass of Jupiter from its four innermost 
satellites. Compare your result with the scientifically accepted value.


