
CHAPTER V

ASTROPHYSICS

Outline:

 Properties of the Stars
 Stellar apparent magnitude and color
 Stellar distance
 Stellar absolute magnitude
 Stellar mass-radius-temperature
 Stellar spectrum

 Hertzsprung-Russell Diagram
 Luminosity class
 Hertzsprung-russell diagram of stellar cluster

 Stellar Evolution
 Energy generation
 Evolution off the main sequence (low and high mass stars)
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V.1 Property of the Stars

V.1.1 Stellar apparent magnitude and color

When we look at the sky, we note that some stars appear brighter than 

others. All we know at first glance is that stars appear to have different 

brightnesses. 

We would like to have some way of quantifying the observed brightnesses 

of stars. When we speak loosely of brightness, we are really talking about the 

energy flux, f, which is the energy per unit area per unit time received from the 

star.

Ancient astronomers made naked eye estimates of brightness. Hipparchus, 

the Greek astronomer, and later Ptolemy, a Greek living in Alexandria, Egypt, 

around 150 BC, divided stars into six classes of brightness. These classes were 

called magnitudes. This was an ordinal arrangement, with first-magnitude stars 

being the brightest and sixth-magnitude stars being the faintest.

When quantitative measurements were made, it was found that each jump 

of one magnitude corresponded to a fixed flux ratio, not a flux difference. Because 

of this, the magnitude scale is essentially a logarithmic one. This is not too 

surprising, since the eye is approximately logarithmic in its response to light. This 

type of response allows us to see in very low and very high light levels. It was 

found that a difference of five magnitudes corresponds to a factor of 100 in 

brightness. In setting up the magnitude scale, this relation is defined to be exact.

Let b1 and b2 be the observed brightnesses of two stars, and let m1 and m2

be the corresponding magnitudes. The statement that a five-magnitude difference 

gives a flux ratio of 100 corresponds to
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 ……….(5.1)

Equation (5.1) gives brightness ratios in powers of 100, but we usually work in 

powers of ten. To convert this we write 100 as 102, so equation (5.1) becomes

 2 1m m

1 2,5

2

b
10

b



 ……….(5.2)

If we want to calculate a magnitude difference for a given brightness ratio, we 

take the logarithm (base 10) of both sides, giving
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Objects brighter than magnitude 1 can have magnitude 0 or even negative 

magnitudes.

The color of a star can tell us about the star’s temperature. However, we 

need a way of quantifying a color, rather than just saying something is red, green 

or blue. For example, if we compare two blue stars, how do we decide which one 

is bluer? In other words, which one is hotter? 

We define two standard wavelength ranges, centered at  1 and 2 and take 

the ratio of the observed brightnesses, b(1)/b(2). We then convert that brightness 

ratio into a magnitude difference (using equation (5.3)), giving
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We define the quantity m2 – m1 as the color, measured in magnitudes, 

corresponding to the wavelength pair, 1 and 2. For definiteness, let’s assume 

that 2 > 1. As we increase the temperature, b(1)/b(2) increases. This means 

that the quantity m2 – m1 decreases, since the magnitude scale runs backwards. If 

we know that an object is radiating exactly like a blackbody, we need only take 

the ratio of brightnesses at any two wavelengths to determine the temperature.

We don’t really measure the intensity of radiation at a wavelength. Instead, 

we measure the amount of energy received in some wavelength interval. We can 

control that wavelength interval by using a filter that only passes light in that 

Example:

Problem The largest ground-based telescopes extend our range from 6 to 
26 mag. What is the brightness ratio?

Answer Using equation (5.2), we obtain
b1/b2 = 10(26 – 6)/2.5

                                                   b1/b2 = 108
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wavelength range. When we use a filter, we are actually measuring the integral of 

I(, T), that is the energy per second per wavelength interval, over some 

wavelength range. Actually, the situation is more complicated. The transmission 

of any real filter is not 100% over the selected range.

The wavelength ranges of the various filters are shown in Table 5.1. The 

most commonly discussed filters are U (for ultraviolet) B (for blue) and V (for 

visible, meaning the center of the visible part of the spectrum). More recently, R 

(for red), and I (for infrared) have been added (There are actually a couple of 

filters in different parts of the infrared.).

Table 5.1 Filter system.

For example, the B – V color is defined by B – V = 2.5 log10 [I(V) / I(B)] + 

constant, where I(V) and I(B) are the intensities averaged over the filter ranges

(the constant is adjusted so that B – V is zero for a particular temperature star, 

designated A0).  As the temperature of an object increases, the ratio of blue to 

visible increases. This means that the B – V color decreases (again because the 

magnitude scale runs backwards.). So we can conclude that for two particular 

stars, if one star has a value of  B – V < 0 and the other star with B – V > 0, this 

means that star with B – V < 0 is hotter than star with B – V > 0.
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V.1.2 Stellar distance

So far we have discussed how bright stars appear as seen from Earth. 

However, the apparent brightness depends on two quantities: the intrinsic 

luminosity of the star and its distance from us. Two identical stars at different 

distances will have different apparent brightnesses. If we want to understand how 

stars work, we must know their total luminosities. This requires correcting the 

apparent brightness for the distance to the star.

If we have a star of luminosity L, we can calculate the observed energy 

flux at a distance d. If no radiation is absorbed along the way, all the energy per 

second leaving the surface of the star will cross a sphere at a distance d in the 

same time. It will just be spread over a larger area. Therefore, the energy per 

second reaching d is still L, but it is spread over an area of 4d2 so the energy 

flux, f, is

2

L
f

4 d



……….(5.5)

Unfortunately, distances to astronomical objects are generally hard to 

determine. There is a direct method for determining distances to nearby stars. It is 

called trigonometric parallax. The situation is illustrated in Figure 5.1. We note

the position of the star against the background of distant stars, and then six 

months later we note the angle by which the position has shifted. If we take half of 

the value of this angle, we have the parallax angle, p.

Figure 5.1 Geometry for parallax measure-
ments.The figure is not to scale. In 
reality the distance to the star, d, is much 
greater than 1 AU, so the parallax angle, 
p, would normally be very small.
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From the right triangle, we can see that

1AU
tanp

d
 ……….(5.6)

Since p is small, tan(p) ≈ p (rad), which is the value of p, measured in radians. 

Equation (5.6) then gives us

1AU
p(rad)

d
 ……….(5.7)

We define the parsec (abbreviated pc) as the distance of a star that produces a 

parallax angle p of 1 arc sec. We also convert radian to arc seconds since it is 

more convenient. Knowing that 1 radian equals to 206265 arc seconds 

(symbolized " ) and 1 pc equals to 206265 AU,

1
d(pc)

p(")
 ……….(5.8)

With current ground-based equipment, we can measure parallax to within 

a few hundredths of an arc second. Parallax measurements are therefore useful for 

the few thousand nearest stars. They are a starting point for a very complex 

system of determining distances to astronomical objects.

V.1.3 Stellar absolute magnitude

The magnitudes discussed in Section V.1.1, based on observed energy 

fluxes, are called apparent magnitudes. In order to compare intrinsic luminosities 

of stars, we define a system of absolute magnitudes. The absolute magnitude of a 

star is that magnitude that it would appear to have as viewed from a standard 

distance, d0. This standard distance is chosen to be 10 pc. From this definition, it

Example:

Problem The nearest star (Proxima Centauri) has a parallax p = 0.76 arc 
sec. Find its distance from Earth in parsecs!

Answer We use equation (5.8) to give
d = 1/0.76 

                                                            d = 1.32 pc
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can be seen that if a star is actually at a distance of 10 pc, the absolute and 

apparent magnitudes will be the same. 

To see how this system works, consider two identical stars, one at a 

distance d and the other at the standard distance d0. We let m be the apparent 

magnitude of the star at distance d, and M that of the star at distance d0 (Of course, 

M will be the absolute magnitude for both stars.). The energy flux falls off 

inversely as the square of the distance, therefore the ratio of the flux of the star at 

d to that from the star at d0 is (d0/d)2 . Equation (5.3) then gives us

2
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m M 2.5log

d

 
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 
……….(5.9)

Using the fact that log(x2) = 2log(x) gives

10

d
m M 5log
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 
   

 
……….(5.10)

The quantity 5log10(d/10 pc), which is equal to (m – M), is called the 

distance modulus of the star. It indicates the amount (in magnitudes) by which 

distance has dimmed the starlight. If you know any two of the quantities (m, M or 

d) you can use equation (5.10) to find the third. For any star that we can observe, 

we can always measure m, its apparent magnitude. Therefore, we are generally 

faced with knowing M and finding d or knowing d and finding M. 

Example:

Problem A star is at a distance of 100 pc, and its apparent magnitude is 
+5. What is its absolute magnitude?

Answer We use equation (5.10) to find
M = m – 5log(d/10 pc)

         M = 5 – 5log(100 pc/10 pc)
                                                 M = 5 – 5log(10)
                                                 M = 5 – 5 
                                                 M = 0
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We should note that changing the distance of a star changes its apparent 

magnitude, but it does not change any of its colors. Because colors are defined to 

be differences in magnitudes, each is changed by the distance modulus. For 

example, using equation (5.10)

V V

B B

d
m M 5log

10pc

d
m M 5log

10pc

 
   

 
 

   
 

Taking the difference between filter B and V gives

B V B Vm m M M  

Therefore, the distance modulus never appears in the colors.

When we talk about determining an absolute magnitude, we are really only 

determining it over some wavelength range, corresponding to the wavelength 

range of the observations. We would like to have an absolute magnitude that 

corresponds to the total luminosity of the star. This magnitude is called the 

bolometric magnitude of the star. For any type of star, we can define a number, 

called the bolometric correction (abbreviated BC), which relates the bolometric 

magnitude to the absolute visual magnitude MV. Therefore

Bol VM M BC  ……….(5.11)

V.1.4 Stellar mass, radius and temperature

The best way to measure the mass of an object is to measure its 

gravitational influence on another object. For stars, we are fortunate to be able to 

measure the gravitational effects from pairs of stars, called binary stars. Many 

stars we can observe appear to have companions, the two stars orbiting their 

common center of mass. It appears that approximately half of all stars in our 

galaxy are in binary systems. By studying the orbits of binary stars, we can 

measure the gravitational forces that the two stars exert on each other. This allows 

us to determine the masses of the stars using

 

3

1r 2r
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v vP
m m

2 G sin i

         
……….(5.12)



98 | P a g e

In equation (5.12), P represents orbital period, v1r and v2r are radial velocity 

(component of velocity on observer’s line of sight) of each components, i orbital 

inclination with respect to celestial plane and m represents stellar mass. 

As a result of studying many binary systems, astronomers have a good 

idea of the masses of main sequence stars (Stars in which energy is primarily 

produced from the fusion of hydrogen into helium in their cores.). Just as the 

Sun’s temperature places it in the middle of the main sequence, its mass is in the 

middle of the range of stellar masses. The lowest mass main sequence stars have 

about 0.07 of a solar mass, and the most massive stars commonly encountered 

Example:

Problem A binary system is observed to have a period of 10 years. The 
radial velocities of the two stars are determined to be v1r = 10 km/s and 
v2r = 20 km/s, respectively. Find the masses of the two stars (a) if the 
inclination of the orbit is 900, and (b) if it is 450.

Answer Using equation (5.12) we obtain

     
     

3
7 3

1 2
11 2 2 30 3

31 2

10yr 3.16 10 s / yr 10 20 1 10 m / sm m

M 2 6.67 10 Nm / kg 2 10 kg sin i

10.2M
m m

sin i



     
  

 





If i = 900, sin3i = 1, so
m1 + m2 = 10.2 M

We find the ratio of the masses from the ratio of the radial velocities:
m1 / m2 = v2 / v1 = 2.0

This means that m1 = 2m2, so
2m2 + m2 = 3m2 = 10.2 M, giving m1 = 6.8 M and m2 = 3.4 M

If i = 450, 1/sin3i = 2.8. The ratio of the masses does not change, since the 
sin i drops out of the ratio of the radial velocities. This means that we can 
just multiply each mass by 2.8 to give 19.2 M and 9.5 M, respectively.
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have about 60 solar masses. When we think of how large or small stars might 

have turned out to be, the observed range of stellar masses is not very large. This 

range is an important constraint on theories of stellar structure.

An even more stringent constraint is the relationship between mass and 

temperature on the main sequence. The cooler stars are less massive and the hotter 

stars are more massive. We have already said that the existence of the main 

sequence implies a certain relationship between size and temperature. This means 

that if a star is on the main sequence, once its mass is specified, its radius and 

temperature are determined. Another way of looking at this to say that a star’s 

mass determines where on the main sequence it will fall.

Since the mass determines the radius and temperature of a main sequence 

star, it should not be surprising that it also determines the luminosity. The exact 

dependence of the luminosity on mass is called the mass–luminosity relationship. 

This relationship is also explainable from theories of stellar structure. We can 

summarize it by saying that the luminosity varies approximately as some power, 

, of the mass. If we express luminosities in terms of solar luminosities, and 

masses in terms of solar masses, this means that

L M

L M


 

   
  

……….(5.13)

In this section also, we will look at various methods for measuring stellar 

radii. The star whose size is easiest to measure is the Sun. This is actually quite 

useful. We have seen that the Sun is intermediate in its mass and temperature, so 

its radius is probably a fairly representative stellar radius. The angular radius of 

the Sun, , is 16 arc minutes. The Sun is at a distance d = 1.50 x 108 km, so its 

radius, R, is given by

R d tan  


..........(5.14)

Using the above equation, we obtain the Sun’s radius 6.96 x 105 km.    

The Sun is the only star whose disk subtends an angle larger than the 

seeing limitations of ground-based telescopes. We therefore need other techniques 

for determining radii. If we know the luminosity (from its absolute magnitude) 
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and the surface temperature (from the spectral type) of a star, we can calculate its 

radius using equation

1

2

4
eff

L
R

4 T

 
   

……….(5.15)

Eclipsing binaries provide us with another means of determining stellar 

radii. This method involves analysis of the shape of the light curve and a 

knowledge of the orbital velocities from Doppler shift measurements (In an 

eclipsing binary, we don’t have to worry about the inclination of the orbit.). 

Particularly important is the rate at which the light level decreases and increases at 

the beginning and end of eclipses.

We can also estimate the radii of rotating stars. If there are surface 

irregularities, such as hot spots or cool spots, the brightness of the star will depend 

on whether these spots are facing us or are turned away from us. The brightness 

variations give us the rotation period P. From the broadening of spectral lines, due 

to the Doppler shift, we can determine the rotation speed v. This speed is equal to 

the circumference 2R, divided by the period. Solving for the radius gives

Pv
R

2



……….(5.16)

Sometimes the Moon passes in front of a star bright enough and close 

enough for detailed study. An analysis of these lunar occultations tells us about 

the radius of the star. The larger the star is, the longer it takes the light to go from 

maximum value to zero as the lunar edge passes in front of the star. Actually, 

since light is a wave, there are diffraction effects as the starlight passes the lunar 

limb. The light level oscillates as the star disappears. The nature of these 

oscillations tells us about the radius of the star.

We can understand the relationship between color and temperature by 

considering objects called blackbodies. A blackbody is a theoretical idea that 

closely approximates many real objects in thermodynamic equilibrium. An object 

is in thermodynamic equilibrium with its surroundings when energy is freely 

interchanged and a steady state is reached in which there is no net energy flow. 

That is, energy flows in and out at the same rate. A blackbody is an object that 

absorbs all of the radiation that strikes it.
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A blackbody can also emit radiation. In fact, if a blackbody is to maintain 

a constant temperature, it must radiate energy at the same rate that it absorbs 

energy. If it radiates less energy than it absorbs, it will heat up. If it radiates more 

energy than it absorbs, then it will cool. However, this does not mean that the 

spectrum of emitted radiation must match the spectrum of absorbed radiation. 

Only the total energies must balance. The spectrum of emitted radiation is 

determined by the temperature of the blackbody. As the temperature changes, the 

spectrum changes. The blackbody will adjust its temperature so that its emitted

spectrum contains just enough energy to balance the absorbed energy. When the 

temperature which allows this balance is reached, the blackbody is in equilibrium.

Figure 5.2 shows some sample blackbody spectra.

Figure 5.2 Blackbody spectra. Note the shift of the peak wavelength to higher 
frequency (shorter wavelength) at higher temperature. Note also that, at 
any frequency, a hotter blackbody gives off more radiation than a 
cooler one.
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If we compare these spectra to those of actual stars, we see that the actual 

spectra are very much like blackbody spectra. Notice that in any wavelength 

range, a hotter blackbody gives off more energy than a cooler blackbody of the 

same size. We also see that as the temperature increases the peak of the spectrum 

shifts to shorter wavelengths. The relationship between the wavelength at which 

the peak occurs, max, and temperature, T, is very simple. It is given by Wien’s 

displacement law:
3

maxT 2.90 10 mK   ……….(5.17)

In this law, we must use temperature on an absolute (Kelvin) scale. The 

temperature on the Kelvin scale is the temperature on the Celsius scale plus 273.1.

V.1.5 Stellar spectrum

We know that if we pass white light through a prism, light of different 

colors (wavelengths) will emerge at different angles with respect to the initial 

beam of light. If we pass white light through a slit before it strikes the prism 

(Figure 5.3), and then let the spread-out light fall on the screen, at each position 

on the screen we get the image of the slit at a particular wavelength.

Both William Hyde Wollaston (1804) and Josef von Fraunhofer (1811) 

used this method to examine sunlight. They found that the normal spectrum was 

crossed by dark lines. These lines represent wavelengths where there is less 

radiation than at nearby wavelengths. The lines are only dark in comparison with 

the nearby bright regions. The linelike appearance comes from the fact that, 

Example:

Problem Find the temperature of an object whose blackbody spectrum 
peaks in the middle of the visible part of the spectrum,  = 550 nm!

Answer We use equation (5.17) to give
T = 2.9x10-3 mK/[(550 nm)(1x10-9 m/nm)] 

                              T = 5270 K

This is close to the temperature of the Sun.
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ateach wavelength, we are seeing the image of the slit. It is this linelike 

appearance that leads us to call these features spectral lines. If we were to make a 

graph of intensity vs. wavelength, we would find narrow dips superimposed on 

the continuum. The solar spectrum with dark lines is sometimes referred to as the 

Fraunhofer spectrum. Fraunhofer gave the strongest lines letter designations that

we still use today.

The origin of these lines was a mystery for some time. In 1859, the 

German chemist Gustav Robert Kirchhoff noticed a similar phenomenon in the 

laboratory. He found that when a beam of white light was passed through a tube 

containing some gas, the spectrum showed dark lines. The gas was absorbing 

energy in a few specific narrow wavelength bands. In this situation, we refer to 

the lines as absorption lines. When the white light was removed, the spectrum 

showed bright lines, or emission lines, the wavelengths where absorption lines had 

previously appeared. The gas could emit or absorb energy only in certain 

wavelength bands.

Kirchhoff found that the wavelengths of the emission or absorption lines 

depend only on the type of gas that is used. Each element or compound has it own 

set of special wavelengths. If two elements which don’t react chemically are 

mixed, the spectrum shows the lines of both elements. Thus, the emission or 

absorption spectrum of an element identifies that element as uniquely as 

fingerprints identify a person.
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Figure 5.3 If we pass white light through a slit, the beam of light is then spread out 
as it passes through the prism. On the screen, we are seeing a 
succession of images of the slit in different colors.

When spectra were taken of stars other than the Sun, they also showed 

absorption spectra. Astronomers began to classify and catalog the spectra, even 

though they still did not understand the mechanism for producing the lines. This 

points out an important general technique in astronomy – studying large numbers 

of objects to look for general trends. In one very important study, over 200,000 

stars were classified by Annie Jump Cannon at the Harvard College Observatory. 

One set of spectral lines common to many stars was recognized as 

belonging to the element hydrogen. The stars were classified according to the 

strongest hydrogen absorption lines. In this system, A stars have the strongest 

hydrogen lines, B stars the next strongest, and so on. These letter designations 

were called spectral classes or spectral types. We now know that the different 

spectral types correspond to different surface temperatures. However, the 

sequence A, B, . . . is not a temperature-ordered sequence. For reasons we will 

discuss below, hydrogen lines are strongest in intermediate temperature stars.

The spectral classes we use, in order of decreasing temperature, are O, B, 

A, F, G, K, M. We break each of these classes into ten subclasses, identified by a 

number from zero to nine; for example, the sequence O7, O8, O9, B0, B1, B2, . . , 

B9, A0, A1, . . . . (For O stars the few hottest subclasses are not used.). For some 
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of the hotter spectral types, we even use half subclasses, for example, B1.5. It was 

originally thought that stars became cooler as they evolved, so that the 

temperature sequence was really an evolutionary sequence. Therefore, the hotter 

spectral types were called early and the cooler spectral types were called late. We 

now know that these evolutionary ideas are not correct. However, the 

nomenclature still remains. We even talk about a B0 or B1 star being ‘early B’ 

and a B8 or B9 as being a ‘late B’.

We now look at the properties of different spectral types, in order of 

increasing temperature. Sample spectra are shown in Figure 5.4. 

M Temperatures in M stars are below 3,500 K, explaining their red color. The 
temperature is not high enough to produce strong H absorption, but some lines 
from neutral metals are seen. The stars are cool enough for simple molecules to 
form, and many lines are seen from molecules such as CN (cyanogen) and TiO 
(titanium oxide). If cool stars show strong CH lines, we designate them as C-type 
or ‘carbon stars’. If any M star has strong ZrO (zirconium oxide) lines as 
opposed to TiO lines, we call it an S-type.

K Temperatures range from 3,500 to 5,000 K. There are many lines from neutral 
metals. The H lines are stronger than in M stars but most of the H is still in the 
ground state.

G Temperatures in the range 5,000–6,000 K. The Sun is a G2 star. The H lines are 
stronger than in K stars, as more atoms are in excited states. The temperature is 
high enough for metals with low ionization energies to be partially ionized. Two 
prominent lines are from Ca(II). When Fraunhofer studied the solar spectrum, he 
gave the strongest lines letter designations. These Ca(II) lines are the H and K 
lines in his sequence.

F Temperatures range from 6,000 to 7,500 K. The H lines are a little stronger than 
in G stars. The ionized metal lines are also stronger.

A Temperatures range from 7,500 to 10,000 K. These stars are white–blue in color. 
They have the strongest H lines. Lines of ionized metals are still present.

B Temperatures are in the range 10,000–30,000 K, and the stars appear blue. The 
H lines are beginning to weaken because the temperatures are high enough to 
ionize a significant fraction of the hydrogen. The lines of neutral and singly 
ionized helium begin to appear. 

O Temperatures range from 30,000 to over 60,000 K, and the stars appear blue. The 
earliest spectral types that have been seen are O3 stars and there are very few O3 
and O4 stars. The hydrogen lines fall off very sharply because of the high rate of 
ionization. The lines of singly ionized helium are still present, but there are very 
few lines overall in the visible part of the spectrum. There are several lines in the 
ultraviolet.
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Figure 5.4 Samples of spectra from stars of different spectral types.The name of the star 
appears on the right of each spectrum, and the spectral type appears on the 
left. In each spectrum, the wavelength increases from left to right. Hotter 
stars are at the top.

V.2 Hertzsprung–Russell Diagram

V.2.1 Luminosity class

Even though we cannot study any one star (except for the Sun) in great 

detail, we can compensate somewhat by having a large number of stars to study. 

From statistical studies we learn about general trends. For example, if we find that 

brighter stars tend to be both hotter and larger, then any theory of stellar structure 

would have to explain that trend.

One of the earliest statistical studies was carried out in 1910 independently 

by the Danish astronomer Ejnar Hertzprung, and the American astronomer Henry 

Norris Russell. They plotted the properties of stars on a diagram in which the 

horizontal axis is some measure of temperature (e.g. color or spectral type) and 

the vertical axis is some measure of luminosity. We call such a diagram a 

Hertzprung–Russell diagram, or simply an HR diagram.

An HR diagram for over 40,000 nearby stars is shown in Figure 5.5. 

These stars were studied by the Hipparcos satellite, which was designed to 

measure trigonometric parallaxes, so distances to these stars are well known. Most 

of the stars are found in a narrow band, called the main sequence. The 

significance of the main sequence is that most stars of the same temperature have 
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essentially the same luminosity, and hence essentially the same size. This close 

relationship between size and temperature must be a result of the laws of physics 

as applied to stars. It gives us hope that we can understand stellar structure by 

applying the known laws. It also gives us a crucial test: any theory of stellar 

structure must predict the existence of the main sequence.

Figure 5.5 HR diagram for over 40,000 nearby stars studied by the 
Hipparcos satellite. In this figure, the color represents the 
number of stars in each category, with red being the most 
and blue being the least.

Not all stars appear on the main sequence. Some appear above the main 

sequence. This means that they are more luminous than main sequence stars of the 

same temperature. If two stars have the same temperature but one is more 

luminous, it must be larger than the other. Stars appearing above the main 

sequence are therefore larger than main sequence stars. We call these stars giants. 

By contrast, we call the main sequence stars dwarfs. We subdivide the giants into 

three groups: subgiants, giants, supergiants.
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To keep track of the size of a star of a given spectral type, we append a 

luminosity class to the spectral type (see Figure 5.6 below). The luminosity class 

is denoted by a roman numeral. Main sequence stars are luminosity class V. The 

Sun, for example, is a G2 V star. Subgiants are luminosity class IV, giants are 

luminosity class III. Luminosity class II stars are somewhere between giants and 

supergiants. Supergiants are luminosity class I. We further divide supergiants into 

Ia and Ib, with Ia being larger. When we look at the spectral lines from a star we 

can actually tell something about the size. Stars of different sizes will have 

different accelerations of gravity near their surface. The surface gravity affects the 

detailed appearance of certain spectral lines.

Figure 5.6 A schematic HR diagram, showing the main features of the 
actual diagrams. Luminosity classes are indicated by roman 
numerals.

There are also stars that appear below the main sequence. These stars are 

typically 10 magnitudes fainter than main sequence stars of the same temperature. 

They are clearly much smaller than main sequence stars. Since most of these are 

in the middle spectral types, and therefore appear white, we refer to them as white 
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dwarfs. Do not confuse dwarfs, which are main sequence stars, with white dwarfs, 

which are much smaller than ordinary dwarfs.

Example:

Problem Suppose that a white dwarf has the same spectral type as the 
Sun, but has an absolute magnitude that is 10 mag fainter than the Sun. 
What is the ratio of the radius of the white dwarf, Rwd, to that of the Sun, 
R?

Answer Using equation (5.2) but now for absolute magnitude, we obtain

wdM M
wd 2.5

10
4wd 2.5

L
10

L

L
10 10

L








 







Having the same spectral type means both stars have the same 
temperature

From equation (5.15), we obtain

 

1

2
wd wd

1
4 2wd 2

R L

R L

R
10 10

R
 

 
   
 

 

 



The radius of a white dwarf is 1% of the radius of the Sun!
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II.2.2 Hertzsprung–russell diagram of stellar cluster

For any cluster for which we plot an HR diagram, we only know the 

apparent magnitudes, not the absolute magnitudes. If we know the absolute 

magnitude for one spectral type, then we can find the distance modulus for stars of 

that spectral type in the cluster. The distance modulus is the same for all the stars 

in the cluster, so we can calibrate the whole HR diagram in terms of absolute 

magnitudes. To obtain a reliable calibration, we would like to carry it out for 

many stars. We have already seen that there is a growing group of nearby stars for 

which trigonometric parallax can give us a good distance measurement.

Once we know the absolute magnitude for a given spectral type, we have a 

very useful way of determining distances. For any given star, we measure m, the 

apparent magnitude. We take a spectrum of the star to determine its spectral type. 

From the spectral type we know the absolute magnitude, M. Since we know m and 

M, we know the distance modulus, m – M, and therefore the distance. This 

procedure is called spectroscopic parallax. The word ‘spectroscopic’ refers to the 

fact that we use the star’s spectrum to determine its absolute magnitude. The word 

‘parallax’ refers to the fact that this is a distance measurement (just as 

trigonometric parallax was a distance measurement using triangulation).

Example:

Problem For a B0 star (M = –3), we observe an apparent magnitude m = 
10. What is the distance to the star, d?

Answer We use equation (5.10) to find the distance

10

d
m M 5log

10pc

 
   

 

Solving for d gives d = 4,000 pc
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II.3 Stellar Evolution

II.3.1 Energy generation

When a star is on the main sequence, its basic source of energy is the 

conversion of hydrogen into helium. We start with four protons and end up with 

one 4He nucleus. However, it is unlikely that four protons will get close enough to 

directly form a 4He nucleus in a single reaction. There are different series of 

reactions that achieve this net result, and they will be discussed below.

We can calculate the energy released by converting four protons to one 
4He by comparing their masses. We find that

   4
p p4m m He 0.007 4m  ……….(5.18)

This means that 0.007 of the mass of each proton is converted into energy.

If we assume that most of the mass of the Sun was originally in the form 

of protons, then 0.007 of the Sun’s total mass is available for conversion into 

energy. The total energy available is therefore
2E 0.007M c


……….(5.19)

Example:

Problem If only 10% of the mass of the Sun is in a region hot enough for 
nuclear reactions (the core), estimate the lifetime of the Sun for producing 
energy at its current rate from nuclear fusion!

Answer We use equation (5.19) to obtain the total energy

   230 8

44

E 0.007 10% 2.0 10 kg 3.0 10 m / s

E 1.3 10 Joule

   

 

The lifetime is this energy divided by the luminosity:

44

26

17 10

E 1.3 10 J
t

L 4.0 10 J / s

t 3.3 10 s 1.0 10 years


 


   

The Sun has already lived half of this time
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II.3.2 Evolution off the main sequence: low and high mass stars

We first look at stars whose mass is less than about 5 M. Eventually a 

star will reach the point where all the hydrogen in the core has been converted to 

helium. For a low mass star, the central temperature will not be high enough for 

the helium to fuse into heavier elements. There is still a lot of hydrogen outside 

the core, but the temperature is not high enough for nuclear reactions to take 

place. The core begins to contract, converting gravitational potential energy into 

kinetic energy, resulting in a heating of the core. The hydrogen just outside the 

core is heated to the point where it can fuse to form helium, and this takes place in 

a shell at the outer edge of the core (see Figure 5.7).

We refer to this as a hydrogen-burning shell, where the word “burning” 

refers to nuclear reactions, rather then chemical burning. As the core contracts, the 

rate of energy generation in the shell increases. The shell can easily give off 

energy at a greater rate than the core did during the star’s normal lifetime.

Figure 5.7 Star with an H-burning shell. (a) The temperature in the 
star is not hot enough to fuse the helium in the center, 
but is hot enough to keep the H in the shell burning. (b) 
In this star, the temperature is hot enough to keep both 
burning.
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While all of this is happening in the interior, the outer layers of the star are 

changing. Energy transport from the core is radiative, and is limited by the rate at 

which photons can diffuse through the star. The outer layers of the star become 

hotter and expand. As the gas expands, it cools. The star’s radius has increased, 

but its temperature has decreased, so the luminosity increases slightly. The 

behavior of the star’s track on the HR diagram is shown in Figure 5.8. The track 

moves to the right (cooler), and the star appears as a subgiant.

Figure 5.8 Evolutionary tracks away from the main sequence on 
an HR diagram. Each track is marked by the mass for 
the model.The dashed line is the zero-age main 
sequence (ZAMS).

There is a mechanism that keeps the surface temperature from becoming 

too low. The rate of photon diffusion increases as the absolute value of gradient 

temperature increases. Remember, gradient temperature is negative, so we are 

saying that the greater the temperature difference between some point on the 

inside and the surface, the greater the energy flow between those two points. If the 

surface temperature of the star falls too much, the photon diffusion is faster, 
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delivering more energy to the surface, raising the surface temperature. Therefore, 

as the radius continues to increase, the surface temperatureremains approximately 

constant. The luminosity therefore increases, and the evolutionary track moves 

vertically. The star is then a red giant.

We now look at the evolution of the core while the star is becoming a red 

giant. The temperature of the core climbs to 108 K. This is hot enough for the 

triple-alpha process to take place, fusing the helium into carbon. The density is so 

high that the material no longer behaves like an ideal gas. This is called a 

degenerate gas. In an ideal gas, when the triple-alpha process starts, the extra 

energy generated causes an increase in pressure, which causes the gas to expand, 

slowing the reaction rate. This keeps the reactions going slowly. In a degenerate 

gas the pressure doesn’t depend on temperature and no such safety valve exists. 

The conversion of helium to carbon takes place very quickly. We call this sudden 

release of energy the helium flash. The energy released causes a brief increase in 

stellar luminosity.

Following the helium flash the energy production decreases. The core is 

no longer degenerate, and steady fusion of helium to carbon takes place. This 

region is surrounded by a shell in which hydrogen is still being converted into 

helium. At this point the star reaches the horizontal branch on the HR diagram. 

The outer layers of the star are weakly held to the star, since they are so far from 

the center. The star begins to undergo mass loss. The subsequent evolution 

depends on the amount of mass that is lost.

Eventually all the helium in the core is converted into carbon and oxygen. 

The temperature is not high enough for further fusion, and the core again begins to 

contract. A helium-burning shell develops, and the rate of energy production again 

increases. The envelope of the star again expands. On the HR diagram the 

evolutionary track ascends the giant branch again, reaching what is called the 

asymptotic giant branch. Stars on the asymptotic giant branch are more luminous 

than red giants. The star can briefly become large enough to become a red 

supergiant at this stage. The star can also undergo oscillations in the rate of 

nuclear energy generation.
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We have already said that the outer layers of a red giant are held together 

very weakly. Remember, the gravitational force on a mass m in the outer layer is 

GmM/R2, where M is the mass of the star and R is its radius. As the star expands, 

M stays constant, so the pull on the outer layer falls off as 1/R2. Since the outer 

layer is weakly held, it is subject to being driven away. The actual mechanism for 

driving material away is still not fully understood. It may involve pressure waves 

moving radially outward. It may also involve radiation pressure. Photons carry 

energy and momentum (Remember, the momentum of a photon of energy E is 

E/c.). When photons from inside the star strike the gas in the outer layers, and are 

absorbed, their momentum is also absorbed. By conservation of momentum, the 

shell must move slightly outward. We do observe shells that are ejected. They are 

fuzzy in appearance in small telescopes, just like planets; when originally 

observed, they were called planetary nebulae.

Figure 5.9 HST image of planetary nebula, the Ring Nebula 
(M57), in the constellation Lyra. It is at a distance of 1 
kpc, and is about 0.3 pc across. In its center there is a 
white dwarf.
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The material left behind after the planetary nebula is ejected is the remnant 

of the core of the star. It is mostly carbon or oxygen, and its temperature is not 

high enough for further nuclear fusion to take place. The gas pressure is not high 

enough to support the star against gravitational collapse. This collapse would 

continue forever if not for an additional source of pressure when a high enough 

density is reached. This pressure arises from electron degeneracy. A star 

supported by electron degeneracy pressure will be quite small, since it must 

collapse to a high density before the degeneracy pressure is high enough to stop 

the collapse. These objects are quite hot, being the remnant of the core of a star. 

These objects are the stars that appear on the HR diagram as white dwarfs.

More massive stars live a shorter lifetime on the main sequence than do 

lower mass stars. As with the lower mass stars, the main sequence lifetime for 

higher mass stars ends when the hydrogen in the core is used up. The core then 

begins to contract, and the temperature for helium fusion to heavier elements is 

quickly reached. The helium fusion takes place before the core can become 

degenerate. Therefore, in contrast with the helium flash in lower mass stars, the 

helium burning in more massive stars takes place steadily. At this point, the star 

has a helium-burning core with a hydrogen-burning shell around it (Figure 5.10).

Figure 5.10 Shells in the core of a high mass 
star as it evolves away from the 
main sequence. (a) The core is 
only a small fraction of the total 
radius. (b) In the core, there is a 
succession of shells of different 
composition. Each shell has 
exhausted the fuels that are still 
burning in shells farther out.
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When the helium in the core is exhausted, the temperature is high enough 

for the carbon and oxygen to fuse into even heavier elements. At this time, we 

have a carbon- and oxygen-burning core, surrounded by a helium-burning shell, 

which in turn is surrounded by a hydrogen-burning shell. As heavier elements are 

built up, the core develops more layers.

As the luminosity of the core increases, the outer layers of the star expand. 

The atmosphere cools with the expansion, but the size increases sufficiently for 

the luminosity to increase. At this point the envelope is convective, and the 

temperature gradient is limited by the adiabatic lapse rate. So the envelope must 

grow to a large size to accommodate the large temperature difference between the 

core and the surface. Eventually, the radius of the star reaches about 103 R. At 

this point the star is called a red supergiant.

In the core of a high mass star the buildup of heavier elements continues. 

The isotope of iron 56Fe has the highest binding energy per nucleon. This makes it 

the most stable nucleus. This means that any reaction involving 56Fe, be it fission 

or fusion, requires an input of energy. When all of the mass of the core of the star 

is converted to 56Fe (and other stable elements, such as nickel), nuclear reactions 

in the core will stop. 

At this stage, the core will start to cool and the thermal pressure will not be 

sufficient to support the core. As long as the mass of iron in the core is less than 

the Chandrasekhar limit (< 1.44 M), the core can be supported by electron 

degeneracy pressure. However, once the core goes beyond that limit, there is 

nothing to support it, and it collapses. In the collapse, some energy, previously in 

the form of gravitational potential energy, is liberated. As the iron is destroyed, 

protons are liberated from nuclei. The electrons in the star can combine with these 

protons to form neutrons and neutrinos.

The core is driven to a very dense state in a short time, about one second. 

What happens next is not completely understood, but the collapse results in an 

explosion in which most of the mass of the star is blown away. The neutrons 

created probably play a role in this. They also obey the exclusion principle, and 

exert a degeneracy pressure. This pressure can stop the collapse and cause the 

material to bounce back. In addition, so many neutrinos are created, and the 
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material is so dense, that a sufficient number of neutrinos interact with the matter 

forcing the material outward. Such an exploding star is called a supernova. This 

type of supernova is actually called a type II supernova. Another type of 

supernova, type I, seems to be associated with older objects in our galaxy (the 

mechanism for type I supernovae probably involves white dwarfs in close binary 

systems). During the explosion, nuclear reactions take place very rapidly, and 

elements much heavier than iron are created. This material is then spread out into 

interstellar space, along with the results of the normal nucleosynthesis during the 

main sequence life of the star. This enriched material is then incorporated into the 

next generation of stars.

The core is compressed so that normal gas pressure cannot support it. If 

the mass is more than 1.44 M electron degeneracy pressure cannot support it. 

The collapse of the core continues beyond even the high densities associated with 

a white dwarf. As the density increases, electrons and protons are forced together 

to make neutrons. The resulting object is called a neutron star. The material 

thrown out in a supernova explosion is called a supernova remnant. It contains 

most of the material that was once the star. In young supernova remnants we can 

actually see the expansion of the ejected material. These remnants are important 

because they spread the products of nucleosynthesis in stars throughout the 

interstellar medium. There, this material enriched in “metals” will be incorporated 

into the next generation of stars. This explains why stars that formed relatively 

recently in the history of our galaxy have a higher metal abundance than the older 

stars. In the later stages of a supernova remnant’s expansion, we still see a 

glowing shell, like those in Figure 5.11.
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Figure 5.11 HST image of the region of SN1987A in the galaxy Large 
Magellanic Cloud. The small bright ring shows the interaction of 
the expanding supernova remnant with the surrounding medium.

Example:

Problem Estimate the density of a neutron star and compare it with that 
of a neutron. Take the mass and radius of the star to be 1.4 M and 15 km 
respectively.

Answer The density of the star is the mass divided by the volume:

  
   

30

17 3
34

1.4 2 10 kg
2 10 kgm

4 1.5 10 m3




   
 

The density of a neutron is

 
   

27

17 3
neutron 315

1.7 10 kg
4 10 kgm

4 1.0 10 m3







   

 

We see that the density of a neutron star is very close to that of a neutron. 
This means that the neutrons in a neutron star must be packed very close 
together, with very little empty space.
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The Hertzsprung – Russell Diagram

Procedure:

1. Use the table below to plot a selection of stars from 47 
Tucanae on the color magnitude diagram. The stars 
have been broken into three separate lists of stars. In 
graph, plotting color index (B – V) along the bottom (x) 
axis and absolute magnitude along the vertical (y) axis. 
Do not forget to format the vertical axis value in reverse 
order!

2. Plot your HR diagram of the stars in Orion. In graph, 
plotting spectral type (or temperature) along the 
bottom (x) axis and luminosity (not luminosity class!) 
along the vertical (y) axis. You can use the sun’s 
luminosity value as a unit of luminoisty if you wish.

3. If you need other informations related to physical 
parameter of the stars (e.g. temperature etc) refer to 
this website: http://simbad.u-strasbg.fr/simbad/ or
http://www.wikipedia.org

4. What is your conclusion about the two graphs you 
have plotted according to their trend of data? How are 
they similar? How are they different?

Astronomy Laboratory Lab Skills and 
Objectives

 Construct the 
Hertzsprung –
Russell diagram

 Compare and 
contrast the 
Hertzsprung –
Russell diagram of 
globular cluster with 
stars in Orion
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