Boyle's law lab

- Purpose: to investigate mathematical relationship between pressure and volume
- Sample calculations:

Diameter of piston $\cong 2.40 \mathrm{~cm}(2.30-2.50)$
Radius $\cong 1.20 \mathrm{~cm}$
Area $\cong \pi r^{2} \cong 4.52 \mathrm{~cm}^{2}$ (4.15-4.91)
Book pressure \cong average book weight area of contact
$\cong 850 \mathrm{~g} / 4.52 \mathrm{~cm}^{2}$

$$
\cong 188 \mathrm{~g} / \mathrm{cm}^{2}(173-205)
$$

PV column should be 36,000 all the way down

PPessumevys./Kodilume

Conclusions and Questions

3. If P doubles, V is cut in half. If P is tripled, V becomes $1 / 3$ of its original value.
4. "As the pressure on a gas increases, the volume of the gas decreases proportionally, provided that the temperature and amount of gas remain constant". I.e. $\mathbf{P}_{1} \mathbf{V}_{1}=\mathbf{P}_{2} \mathbf{V}_{2}$.
5. As volume decreases, there are more collisions with the side of the container per unit of time, thus the pressure increases.
6. $\mathrm{P}_{1}=103 \mathrm{kPa}, \mathrm{V}_{1}=5.2 \mathrm{~L}, \mathrm{P}_{2}=400 \mathrm{kPa}, \mathrm{V}_{2}=$?

Using Boyle's law: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$,
$103 \mathrm{kPa} \times 5.2 \mathrm{~L}=400 \mathrm{kPa} \times \mathrm{V}_{2}$
$\mathrm{V}_{2}=(103 \mathrm{kPa} \times 5.2 \mathrm{~L}) / 400 \mathrm{kPa}=1 . \underline{3} 4 \mathrm{~L}$
7. $P_{1}=700 \mathrm{~mm} \mathrm{Hg} \times 1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}=$ $0.921 \mathrm{~atm}, \mathrm{~V}_{1}=200 \mathrm{ml}, \mathrm{P}_{2}=$?, $\mathrm{V}_{2}=950 \mathrm{ml}$ Using Boyle's law: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ $0.921 \mathrm{~atm} \times 200 \mathrm{ml}=\mathrm{P}_{2} \times 950 \mathrm{ml}$ $\mathrm{P}_{2}=(0.921 \mathrm{~atm} \times 200 \mathrm{ml}) / 950 \mathrm{ml}=0.194 \mathrm{~atm}$

Conclusion

- By comparing values in the PV column and via the graph we see that PV = constant
- This is called Boyle's law (after the scientist that first discovered the relationship)
- We will be looking more closely at Boyle's law
- For example, using the form $P_{1} V_{1}=P_{2} V_{2}$
- Read "Results of Boyle's Law Experiment" on handout. Do questions 1-6.

