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Abstract. Analytical expressions of transmission coefficient and tunneling time of 
electrons incident on a heterostructure grown on an anisotropic material are 
derived by solving the effective-mass equation including off-diagonal effective-mass 
tensor elements. It is assumed that the direction of propagation of the electron 
makes an arbitrary angle with respect to the interfaces of the heterostructure and 
the effective mass of the electron is position dependent. The analytic expressions 
are applied to the Si(110)/Si0.7Ge0.3/Si(110) heterostructure, in which the SiGe 
barrier thickness is several nanometers. The calculated results shows that the 
transmission coefficient and the tunneling time are depend on the valley and it is 
not symmetric with the angle of incidence. 
Key-words: Anisotropic material, heterostructure, nanometer-thick barrier, 
transmission coefficient, tunneling time. 
 

1 Introduction 
 
The tunneling phenomenon through a potential barrier has been discussed for last 
half century and also is of present day interest in the study of charge transport in a 
heterostructure. Paranjape has studied tunneling time and transmission coefficient 
of an electron in an isotropic heterostructure with different effective masses [1]. 
Kim and Lee have derived the electron tunneling time, post-tunneling position and 
transmission coefficient in a heterostructure barrier grown on anisotropic materials 
including off-diagonal effective-mass tensor elements [2]. In this paper, we report a 
theoretical study on the direct tunneling time and transmission coefficient of an 
electron in a heterostructure with nanometer-thick barrier grown on an anisotropic 
material with electron propagation direction making an arbitrary angle with respect 
to the interfaces of the heterostructure. 
 

2 Theoretical model 
 
In order to study the behavior of an electron in an anisotropic heterostructure, we 
must solve the Schrödinger equation : 

)(Eψ)(Hψ rr = ,       (1) 
where 

)V()α(
o2m

1H rprTp += .      (2) 

is the Hamiltonian, mo is the mass of free electron, p is the momentum vector, 
(1/mo)α is the inverse effective-mass tensor and V(r) is the potential energy.  
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Figure 1 shows the potential profile in the normal direction (z direction) to the 
layer. The electron is incident from region I to potential barrier. The effective mass 
of the electron and potential are dependent only on the z direction. Φ is the 
potential barrier height due to band discontinuity of Si(110) and Si0.7Ge0.3 and d is 
the barrier width. The wave function of the effective-mass equation with the 
Hamiltonian of Eq. (1) is given as [2]: 

y))ykxx(i(kexpz))i(exp(z))ψ( +−= γϕr ,    (3) 

where 

zzα
yzαykxzαxk
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=       (4) 

is the wave number parallel to the interface. By substituting Eq (2) into Eq (1) it is 
found that φ(z) satisfies the one dimensional Schrödinger-like equation: 
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where the subscript l in αzz,l denotes each region in Fig. 1. Energy in the z direction 
can be then written as  
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and αij is the tensor elements associated with the inverse effective mass tensor. 
 

 
Fig 1. The model used in the numerical calculation 

 
The time-independent electron wave function in each region is : 
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The incident wave Aexp(ik1z) has the wave number k1 expressed as  
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where E is smaller than the barrier height Φ. The wave numbers k2 and  k3 are 
given as follows 
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with the continuity conditions of the wavefunction at z = 0 and z = d given by [2] : 
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With these boundary conditions we obtain the transmission amplitude Ta as : 
)(iexpGaT φ= ,       (16)  

where  
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is the amplitude of Ta, 

)d2γ1(γd3k(u)tanh
Q
P1tanφ −+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−=     (18) 

is the phase of Ta, 
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The transmission coefficient is easily obtained from 
T =Ta*Ta.       (22) 

The direct tunneling time of an electron through the square barrier is [2]: 
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Substituting Eq. (18) into Eq. (23), for energies lower than the potential barrier, we 
get 
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3 Calculated results and discussion 
 
Referring to Fig. 1, a strained Si0.7Ge0.3 potential barrier (region II) is grown on Si 
(110) in region I or III. The width of the barrier is 50   Å and the band discontinuity 
is taken as 216 meV [2].  
 
There are four equivalent valleys in the conduction band of Si (110). The effective 
mass tensor elements of these four valleys are not the same. There are two groups 
of valleys in Si (110) and Si0.7Ge0.3. The inverse effective masses used in our 
example are related to the tensor elements αij in Table 1 [3]. 

 
Table I. Tensor elements (αij) used in the numerical calculation. 

Valley Region I, III Region II 
1 5.26      0           0 

0      3.14     2.12 
0      2.12     3.14 

5.91      0           0 
0      3.86     2.45 
0      2.45     3.86 

2 5.26      0           0 
0      3.14     -2.12 
0      -2.12     3.14 

5.91      0           0 
0      3.86     -2.45 
0      -2.45     3.86 

 
Figure 2 shows the chosen coordinate system. We take the position where the 
electron hits the barrier as the origin of the coordinate system. In the spherical 
coordinate system shown in Fig. 2, Eq. (7) becomes 
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Fig.2. The coordinates used in the analysis. 
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Fig 3. The transmission coefficients for the angle of incident varying from -90o to 

90o with incident energies of 150 meV and 200 meV 
 

We calculate the transmission coefficient for the incident angle of k (the wave 
vector of incident electron) varying from -90o to 90o with incident energies of 150 
meV and 200 meV and the results are plotted in Fig. 3.  Although the incidence 
angles are θ and φ, but we fix φ to π/2 for simplicity. It can be seen that the 
transmission coefficient for the incident energy of 200 meV is higher than that for 
the incident energy of 150 meV. This is because electrons have energy high enough 
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to tunnel the barrier. For all valleys, the transmission coefficient is maximum not 
for normal incident but at the incident angle of about 10o.  This is due to fact that 
motions in the x and y directions are not independent of that in the z direction, but 
they are mutually coupled by the off-diagonal effective-mass tensor elements [4]. 
 

 
Fig 4. The tunneling time for the angle of incident varying from -90o to 90o with 

incident energies is 150 meV 
  

The tunneling time versus incident angle is given in Fig.4. We see that the 
tunneling time depends on the valley where the electron belongs and the incident 
angle of k. It is noteworthy that, in all valleys, the tunneling time is not symmetric 
with the change of sign of the incidence angle (θ→-θ), which confirms the 
anisotropy of the material. For the valley 1, the tunneling time has a primary peak 
at the angle θ of -60

o
 for the incident energy of 150 meV while the secondary peak 

occurs at the angle of about 0
o
 for the incident angle of 200 meV. For the valley 2, 

electron with the incident energy of 200 meV have the longest tunneling time at θ = 
0

o
. If the incident angle increases, the next peak of the tunneling time takes place 

at θ = 60
o
 for the energy of 150 meV. 

 

4 Conclusion 
 
We have derived analytical expressions of the direct tunneling time and 
transmission coefficient of an electron in a nanometer-thick square barrier grown 
on anisotropic materials under non-normal incidence. We included the effect of 
different effective masses at heterojunction interfaces. The boundary condition for 
an electron wave function (under the effective-mass approximation) at a 
heterostructure anisotropic junction is suggested and included in the calculation. 
The calculation is done with a Si0.7Ge0.3 potential barrier grown on Si (110). The 
calculation shows that the transmission coefficient and the tunneling time depend 
on the valley and it is not symmetric with the angle of incidence. 
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