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Abstract 

Effective-mass equation including off-diagonal effective-mass tensor elements has been 

solved in deriving transmittances of an electron incident on a heterostructure potential 

with nanometer-thick trapezoidal barrier grown on anisotropic materials. The boundary 

condition for an electron wave function (under the effective-mass approximation) at the 

heterostructure anisotropic junction is suggested and included in the calculation. The 

analytic expression has been applied to the Si(110)/Si0.5Ge0.5/Si(110) heterostructure, in 

which the SiGe barrier thickness is several nanometers. It was assumed that the direction 

of propagation of the electrons makes an arbitrary angle with respect to the interfaces of 

the heterostructure and the effective mass of the electron is position dependent. The 

transmittance has been calculated for above the barrier height with varying the applied 

voltage to the barrier. The electron incident energy and the bias voltages given to barrier 

potential influence the transmittance value. The transmittances depend on the valley 

where the electron belongs and it is not symmetric with respect to the incidence angle but 

the maximum transmittances not depend on the valley.  The maximum transmittance 

depends on the bias voltage. 
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1. Introduction 

 Since last half century, the tunneling phenomenon through a potential barrier is 

still of interest in the study of quantum transport in heterostructures. Paranjape studied 

transmission coefficient of an electron in an isotropic heterostructure with different 

effective masses [1]. Kim and Lee derived the transmission coefficient of an electron 

tunneling through a barrier of an anisotropic heterostructure by solving the effective-mass 

equation including off-diagonal effective-mass tensor elements [2],[3]. Previous, we have 

reported the electron transmittances if bias voltage applied to the potential barrier in 

which the square barrier becomes trapezoidal one for the electron incident energy lower 

than potential barrier [4],[5],[6]. In this paper, we report the derivation and the 

calculation of the transmittance of an electron through a heterostructure with a 

nanometer-thick trapezoidal barrier grown on an anisotropic material, including the effect 

of applied voltage to the barrier if the electron incident energy higher than potential 

barrier. 

 

2. Theoretical Model 

 The conduction band energy diagram of a heterostructure is shown in Fig 1 with 

the potential profile is expressed as : 
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Here, the barrier width and height are d and Φ, respectively. The voltage applied to the 

barrier is Vb with e is the electronic charge. The electron is incident from region I to the 

potential barrier (region II), in which the material of the region I is the same as that of the 

region III. 

             

(a) (b) 

Figure1. The potential profile of a heterostructure without a bias voltage (a) and with the 

application of a voltage to the barrier (b) 

 

The Hamiltonian for general anisotropic materials is [2] 
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where mo is the free electron mass, p is the momentum vector, ( )rα
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 is the inverse 

effective-mass tensor and V(r) is the potential energy. The effective mass of the electron 

and potential are dependent only on the z direction. The wave function of the effective-

mass equation with the Hamiltonian in Eq. (2) is given as [2]: 
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is wave number parallel to the interface. 

By employing the separation variable to Eq. (2), it is easily found that φ(z) satisfies the 

one dimensional Schrödinger-like equation: 
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where ħ is the reduced Planck constant, the subscript l in αzz,l denotes each region in Fig. 

1 and electron energy in z direction written as : 
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is the electron total energy, 
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and αij is the effective mass tensor element. 

The time-independent electron wave function in each region is therefore written as 
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The incident wave Aexp(ik1z) has the wave number k1 which is given as  
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The wave numbers k2(z) and  k3 are expressed, respectively,  as follows 
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By applying the boundary conditions at z = 0 dan z = d, which are written as follows [3]: 
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we obtain the transmission amplitude Ta which is defined as 
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Here, 
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is the magnitude and 
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is the phase of Ta, 
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3.Results and Discussion 

The model used in the numerical calculation is shown in Fig. 1 with a potential 

barrier is a strained Si0.5Ge0.5 potential barrier grown on Si (110). The width of the barrier 

d is 50 
o

A    and the band discontinuity Φ is taken as 216 meV [2].  

There are four equivalent valleys in the conduction bands of Si(110) and strained 

Si0.5Ge0.5. The effective mass tensor elements of these four valleys are not the same. 
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There are two groups of valleys in Si(110) and Si0.5Ge0.5. The inverse effective inverse 

tensor used in Eq. (2) are related to the tensor elements αij  shown in Table 1 [2]. In Table 

1, we see that one group (valley 1) has positive αyz, while another one (valley 2) has 

negative αyz[3]. We denote the group that has positive αyz as valley 1 and the other as 

valley 2. Therefore, the calculated results depend on the group which electron belongs. 

 

Table1. Tensor elements (αij) used in the numerical calculation. 

Valley Region I dan III (Si [110]) Region  II (Si0,5Ge0,5) 

1 5.26      0           0 

0      3.14     2.12 

0      2.12     3.14 

6.45      0           0 

0      4.56     2.74 

0      2.74     4.56 

2 5.26      0           0 

0      3.14     -2.12 

0      -2.12     3.14 

6.45      0           0 

0      4.56     -2.74 

0      -2.74     4.56 

 

Figure 3 shows the chosen coordinate system. We take the position where the 

electron hits the barrier as the origin of the coordinate system. In the spherical coordinate 

system, Eq. (7) becomes 
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Figure.3. The coordinate system used in the analysis 

 

 We calculated the transmission coefficient for the angle of incidence for k (the 

wave vector of incident electron) varying from -90o to 90o with incident energies of 

250meV, 500meV, and 1000meV with varying the applied voltage from 5 mV to 216 

mV. The incident angles are θ and φ, but we fix φ to π/2 for simplicity and change only θ. 

 

Figure 4. The transmittance to incident angle for the incident angle varying from -90o to 

90o with incident energy of 250 meV, 500 meV and 1000 meV with applied voltage of 50 

mV for valley 1. 
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The transmittance as a function of incident angle for incident energy of of 250 meV, 500 

meV and 1000 meV with applied voltage of 50 mV for valley 1 is shown in Fig. 4. For all 

incident energy, we can see the highest transmittances are about 1.4. 

 

 

Figure 5. The transmittance to incident energy in z direction for the incident angle 

varying from -90o to 90o with incident energy of 250 meV, 500 meV and 1000 meV with 

applied voltage of 50 mV for valley 1. 

 

In Fig. 5, transmittance plot to incident energy in z direction (Ez). For all incident 

energies, after transmittances reach the highest transmittance, the transmittance will 

decrease and oscillation at value around 1. For the incident energy of 250meV, the 

highest transmittance occurs at about normal incidence shown at Fig. 4. At this angle, the 
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incident energy in z direction, Ez, is biggest shown in Fig. 5.  But for the incident energy 

500meV, the highest transmittance occurs at incident angle -30o and 70o but at incident 

angle -30o to 70o
 the transmittance is around 1 shown in Fig.4. This caused by at incident 

angle -30o and 70o the incident energy in z direction, Ez, is about 350meV which give the 

maximum transmittance and Ez at -30o<θ<70o is bigger than 350meV where the 

transmittances decrease and oscillation at value about 1 shown in Fig.5. In Fig. 5, it is 

seen effect of incident energy to the transmittances value that is the same transmittances 

value not given from the same Ez. For the same transmittances value, the value of Ez 

increase as the incident energy increase. It is cause by the same Ez from different incident 

energy will give different the wave numbers in region II, k2(z). Ez and k2(z) value depends 

on incident energy and angle. For incident energy 250 meV, if we plot the graph for the 

difference small angle, we will get the transmittance to incident angle like showed in Fig. 

6. Fig 6(a) shows that the transmittance at incident angle about 55o is higher than at 

normal incidence and  it is happen at Ez about 200 meV like showed in Fig 6(b). 
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   (a)     (b) 

Figure 6. The transmittance to incident angle (a) and Ez (b) for incident energy 

250 meV 
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In Fig.7 we fix the incident energy to 500 meV and applied voltage of 5 mV, 50 

mV, 108 mV and 216 mV for valley 1. It is found that the maximum transmittance 

increase with increased the applied voltage. The incident energy in z direction, Ez, which 

makes transmittance maximum decrease with increased the applied voltage. It can see 

that for the same Ez the transmittances value will increase as the applied voltage 

increased. From this, we can say that the applied voltage given to potential barrier will 

make the electron easier to tunneling the potential barrier. For all the incident energy, 

transmittances will increase if the incident energy is increased and after reaching the 

highest transmittance, transmittance will decrease and oscillating at value 1. 

 

Figure 7. The transmittance to incident energy in z direction for the incident angle 

varying from -90o to 90o with incident energy 500 meV and applied voltage of  5 mV, 50 

mV, 108 mV and 216 mV for valley 1. 
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If we plot transmittances to incident angle, we can see that the maximum 

transmittance occurs at incident angle about -30o and 70o but at incident angle -30o to 70o
 

the transmittance is around 1 as shown in Fig. 8. It is because the Ez value depends on 

incident angle and we get the Ez value like shown in Fig.7.  In Fig 9, we fix the applied 

voltage to 216 mV and the incident energy to 1000meV. The highest transmittance 

happen at Ez about 500meV and after reaching the maximum transmittance, the 

transmittance is stable at value about 1 with increasing the incident energy. 

 

Figure 8. The transmittance to incident angle for the incident angle varying from -90o to 

90o with incident energy 500 meV and applied voltage of  5 mV, 50 mV, 108 mV and 

216 mV for valley 1. 
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Figure 9. The transmittance to incident energy in z with incident energy 1000 meV and 

applied voltage of  216 mV for valley 1. 

 

 

(a)     (b) 

Figure 10. The transmittance to incident angle for the incident angle varying from -90o to 

90o with incident energy of (a) 250 meV  and (b) 500 meV with applied voltage of 50 mV 

for valley 1 and valley 2. 
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Fig. 10 shown the transmittance for incident energy of 250meV and 500meV with 

applied voltage of 50 mV for valley 1 and valley 2. For valley 1 and valley 2, for the 

same incident energy, the maximum transmittances will have the same value but the 

shape of transmittances graph like mirror. The sign ± corresponds to valley 1 and 2, 

respectively. This difference in direction also indicates the anisotropy of the material. It is 

due to the fact that the motion in the x and y directions is not independent of that in the z 

direction, but they are mutually coupled by the off-diagonal effective-mass tensors 

elements[2]. For incident energy of 250meV, it is found that electron in the valley 1 and 

valley 2 have the highest transmission coefficient at about normal incidence. We also see 

that, in all valleys, the transmission coefficient is not symmetric with the change of sign 

of incidence angle (θ→-θ), which confirms the anisotropic of the materials [2]. 

 

 

Figure 11. The transmittance to incident energy for the incident angle varying from -90o 

to 90o with incident energy 500meV with applied voltage of 50 mV for valley 1 and 

valley 2. 
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For case at Fig. 10 (d) if we plot the transmittance to incident energy in z 

direction, Ez, we will get graph like Fig.11. It is show the same shape for all valleys. 

Transmittances at valley 1 and 2 will get the same value when Ez are the same. Ez of 

valley 1 and 2 will have the same value depend on the incident angle of valley 1 and 2. 

This indicates that for the same incident energy and applied voltage, the maximum 

transmittance will be same whatever the valleys. 

  

Conclusion 

We have derived an analytical expression of transmittance of an electron through a 

nanometer-thick trapezoidal barrier grown on anisotropic materials under non-normal 

incidence. We included the effect of different effective masses at heterojunction 

interfaces. The boundary conditions for electron wave functions (under the effective-

mass approximation) at heterostructure anisotropic junctions are suggested and included 

in the calculation. The transmittance will decreased after reaching the highest 

transmittance then stable at value about 1. For the same transmittances value, the value of 

incident energy at z direction increase as the incident energy increase. In the same 

incident energy, the maximum transmittance increased with increased the applied voltage 

to the barrier and for the same Ez the transmittances value will increase as the applied 

voltage increased. The result shows that the transmittances depend on the valley where 

the electron belongs and it is not symmetric with respect to the incidence angle but the 

maximum transmittances not depend on the valley.  
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