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Abstract. Quantum theory in physics is used to model secondary financial markets. Contrary to stochastic 

description, the formalism emphasizes the importance of trading in determining the value of security. All possible 

realization of investors holding securities and cash is as the basis of the Hilbert space of market states. The 

asymptotic volatility of a stock related to long-term probability that is traded. This paper investigates volatility of 

forward rates in secondary financial market. In recent formulation of a quantum field theory of forward rates, the 

volatility of the forward rates was taken to be deterministic. The field theory of the forward rates is generalized to the 

case of stochastic volatility. Two cases are analyzed, firstly when volatility is taken to be a function of forward rates, 

and secondly when volatility is taken to be an independent quantum field. Since volatility is a positive quantum field, 

the full theory turns out to be an interacting non-linear quantum field in two dimensions. The state space and 

Hamiltonian for the interacting theory are obtained, and shown to have a nontrivial structure due to the manifold 

move with constant velocity.  
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1. Introduction 

There are 7 financial instruments i.e: stock, bonds, convertible bonds, rights, warran, term structures, and aset back 

securities. Furthermore, there are also derivative financial instruments i.e: options (both forward or futures-based) 

and swap. This paper focus on forward foreign exchange (forex). Forex forward contract is a contract between a 

bank with its partner (it could be a bank) make a deal to deliver at the prescribed time in the future, a prescribed 

amount of money, and the value of the money are fixed at the sign of the contract.   

 

If the value of the contract is larger, the possibility of different exercise prices (higher or lower) will larger also, 

which define as volatilty. Volatility is regarded as referenced as deviation standard the fluctuation financial 

instrument as a time series. It is essential to the debt market with have wide ranging application in finance. The most 

popular used model for the forward rates is the  Heath-Jarrow-Morton (HJM) [1], and there are number of ways  

HJM model can be generalized. In [2] and [3] was introduced the correlation between  forward rates and its vairious 

maturity and in [4], [5] forward rates was modeled as a stochastic string. 

 

The application of technical of physics ini finance [6] [7] have proved useful in the application, especially the using 

of path integral in various of finance problems [8]. In [9], path integral techniques has been applied to investigate a 

security prodcut with stochastic volatility. In [10], HJM model is generalized with assumption  forward rates as a 

quantum field. Empirical study by  [11] showed that quantum field theory for the forward rates when applied with 

market data have a good result on prediction. 

 

The volatility of the  forward rates is an essential measurement to determine the degree of forward flucutuation. In 

the model studied [10] volatility is taken as deterministic variable of forward function. The question naturally arises 

as whether the volatility it self should considered to be  randomly flluctuating quantites. The volatility of the 

volatility is an accurate measure of degree to which volatility is random. Market data for the Eurodollar futures 

provides a fairly acurate estimate of the forward rates for the US dollar, and also yields its volatility of volatility of 

the forward rates. 
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The fluctuation of the volatility of eurodollar in [17] are about 10% of the forward rates, and hence significant. We 

conclude from the data that the volatility of the forward rates needs to be treated as a fluctuating quantum 

(stochastic) field. The widely studied  HJM model [1] has been further developed by [12] to account for stochastic 

volatility. Amin dan Ng [13] studied tha market data of  Eurodollar option to obtain the implied of the forward rates 

voltility, and Bouchaud et. Al [14] analyzed the future contracts for the forward rates. Both reference concluded that 

many features of the market, and in particular tha stichastic volatility of forward curve, could not be fully explained 

in the HJM model – framework.  

 

The model for the forward rates proposed in [10] is a field theoretic generalization of the HJM model, and so it is 

natural to extend the field theory model to account for stochastic volatility of the forward rates. In contrast to 

quantum field theory, the formulation of te forward rates as a stochastic string in [4], [5] cannot be extended to the 

case where volatility is stochastic due to nonlinearites inherent in the problem.  

 

2. Quantum Field Theory for Stochastic Volatility of the Forward Rates   

The forward rates are the collection of interest rates for a contract entered into at time t for an overnight loan at time 

x > t. At any instant t, there exists in the market forward rates for a duration of TFR  in the future; for example, if t 

refers to present time t0, then one has forward rates from t0 till time t0 +TFR in the future. In the market, TFR is about 

30 years, and hence we have TFR > 30 years. In general, at any time t, all the forward rates exist till time t + TFR [10]. 

The forward rates at time t are denoted by f(t, x), with t < x < t + TFR, and constitute the forward rate curve. Since at 

any instant t there are infinitely many forward rates, it resembles a (non-relativistic) quantum string. Hence we need 

an infinite number of independent variables to describe its random evolution. The generic quantity 3 describing such 

a system is a quantum field [15]. For modeling the forward rates and Treasury Bonds, we consequently need to study 

a two-dimensional quantum field on a finite Euclidean domain. We consider the forward rates f(t, x) to be a quantum 

field; that is, f(t, x) is taken to be an independent random variable for each x and each t. For notational simplicity we 

consider both t and x continuous, and discredited these parameters only when we need to discuss the time evolution 

of the system is some detail. 

 

In Section 2, we briefly review the quantum field theoretic formulation given in [10] of the forward rates with 

deterministic volatility. In Section 3 the case of stochastic volatility is analyzed, and which can be done in two 

different ways. Firstly, volatility can be considered to be a function of the (stochastic) forward rates, and secondly 

volatility can be considered to be an independent quantum field. Both these cases are analyzed. The resulting theories 

are seen to be highly non-trivial non-linear quantum field theories. 

 

In Section 4 the underlying state space and operators of the forward rates quantum field is defined. In particular the 

generator of infinitesimal time evolution of the forward rates, namely the Hamiltonian, is derived for the two cases of 

stochastic volatility. In Section 5 the Hamiltonian for the forward rates with stochastic volatility is derived. In 

Section 6 a Hamiltonian formulation of the condition of no arbitrage is derived. In Section 7 the no arbitrage 

constraint for the case of stochastic volatility is solved exactly using the Hamiltonian formulation. And lastly, in 

Section 8 the results obtained are discussed, and some remaining issues are addressed. 

 

2.1 The Lagrangian for Forward Rates with Deterministic Volatility 

We first briefly recapitulate the salient features of the field theory of the forward rates with deterministic volatility 

[10]. For the sake of concreteness, consider the forward  rates starting from some initial time Ti  to a future time t = 

Tf . Since all the forward rates f (t, x) are always for the  future,  we  have  x  >  t; hence the quantum field f (t, x)  is 

defined on the domain in the shape of a parallelogram that  Ρ  is bounded by parallel lines x = t and x = TF R + t in 

the maturity direction, and by the lines t = Ti  and t = Tf   in the time direction, as shown in Figure 3.1.   

 

Every point inside the domain variable f (t, x) represents an independent integration The field theory interpretation of 

the evolution of the forward rates, as expressed in the  domain Ρ, is that of a (non-relativistic) quantum string moving 

with unit velocity Pin the x (maturity) direction. 
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Figure 3.1. Domain P  of Forward Rates 

  

 

 

 

 

 

 

 

 

 

Since we know from the HJM-model that the forward rates have a drift velocity α(t, x)  and volatility σ(t, x), these 

have to appear directly in the Lagrangian for the forward rates. To define a Lagrangian, we firstly need a kinetic 

term, Lkinetic, that is necessary to have a standard time evolution for the forward rates. We need to introduce another 

term to constrain the change of shape of forward rates in the maturity direction. The analogy of this in the case of an 

ordinary string is a potential term in the Lagrangian which attenuates sharp changes in the shape of the string, since 

the shape of the string stores potential energy. To model a similar property for the forward rates we cannot use a 

simple tension-like term  2
x

f




 in the Lagrangian since, as we will show in Section 7, this term is ruled out by the 

condition of no arbitrage. The no  arbitrage  condition  requires  that  the  forward  rates  Lagrangian contain higher 

order derivative terms, essentially a term of the form  22

tx

f




 such string systems have been studied in [16] and are 

said to be strings with finite  rigidity. Such  a term yields a term  in  the  forward rates Lagrangian, namely Lrigidity, 

with  a  new parameter  µ;  the  rigidites of the forward rates is then given  by 2

1


 and  quantifies the strength of the 

fluctuations of the forward rates in the time-to-maturity direction x . In the limit of 0  we recover (up to some 

rescalings) the HJM-model, and which correspond to an infinitely rigid string. 

 

The action for the forward rates is given by : 

   


  
f FR

i

T t T

T t
S f dt dx fL ……………………………  (1) 

   f
P
L ……………………………………………     (2) 

With Lagrangian density  fL given by: 

      kinetik rigiditasf f fL L L       (3) 
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f t x f t x
t x t x

t t

t x x t x
                 

         ,   f t x        (4) 

 

The presence of the second term in the action given in eq.(3) is not ruled out by no arbitrage [14], and an empirical 

study [11] provides strong evidence for this term in the evolution of the forward rates. In summary, we see that the 

forward rates behave like a quantum string, with a time and space dependent drift velocity α(t, x), an effective mass 

given by  σ(t, x) , and string rigidity proportional to  xt ,

1


 and 2

1


. 

 

Since the field theory is defined on a finite domain  Ρ  as shown in Figure 3.1, we need to specify the boundary 

conditions on all the four boundaries of the finite parallelogram. 

 

a. Fixed  (Dirichlet) Initial  and  Final  Conditions  

Fixed  (Dirichlet) Initial  and  Final  Conditions in t direction given by: 

 

       : , , ,i f i f FR i fT T x T T T f T x f T x   ……………                       (5) 

Specified initial and final forward rate curves. 

 

b. Free (Neumann)  Boundary Conditions 

To specify the boundary condition in the maturity direction, one needs to analyze the action given in eq.(1) and 

impose the condition that there be no surface terms in the  action. A straightforward analysis yields the following 

version of the Neumann condition: 

 
 

 
0

,

,
,

, 





























xt

xt
t

xtf

x
TtT fi





                                    (6) 

and  

FRTtxtx  atau                  (7) 

 

 

The  quantum  field  theory  of  the  forward  rates  is  defined  by  the  Feynman path integral by integrating over all 

configurations, and yields of f (t, x) and : 
 S f

Z D f e                    (8) 

 
 ,

,
t x

D f df t x





  
P

       (9) 

Note  that  
  Ze fS

 is  the  probability  for  different  field  configurations  to occur when  the functional integral 

over f (t, x) is performed. 
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3. Lagrangian for Forward Rates with Stochastic Volatility 

To render the volatility function σ(t, x) stochastic, in the formalism of quantum field theory, requires that we elevate 

σ(t, x) from a deterministic function into random function, namely into a quantum field. There are essentially two 

ways of elevating volatility to a stochastic quantity, namely to either. 

a. Consider it be a function of the forward rate f (t, x), or else ; 

b. To consider it to be another independent quantum field σ(t, x). 

 

 

We study both these possibilities.   

3.1. Volatility a function of the Forward Rates 

We consider the first case where volatility is rendered stochastic by making it a function of the forward rates [13].  

The standard models using this approach consider that volatility is given by : 

       xtfxtxtfxt v ,,,,, 0                  (10) 

 

with 

 xt,0  : deterministic function                 (11) 

 

Since volatility ),( xt > 0, we must have  xtf ,  juga >0, Hence, in contrast to eq. (4), we have: 

       xtefxtf xt ,;0, ,

0 
               (12) 

 

Having f (t, x) > 0 is a major advantage of the model since in the financial markets forward rates are always positive.  

In the limit of 0  the following HJM-models are covered by  eq.(10),  and these  models have  been  discussed 

from an empirical point of view in [13] as follow in table 3.1. 

 

Table.3.1. Previous Formulation on Volatility 

Model Volatility 

Ho dan Lee (1986)    0,,,  xtfxt  

CIR (1985) 

    xtfxtfxt ,,,, 2

1

0   

Courtadon (1982)     xtfxtfxt ,,,, 0   

Vasicek (1997)      txxtfxt   exp,,, 0  

Heath-Jarrow-Morton / HJM (1992)        xtftxxtfxt ,,,,,, 10    

 

How  do  we  generalize  the  Lagrangian given  in  eq.(3)  to  case  where  the forward rates  are  always  positive? 

We interpret the Lagrangian given in eq(3) to be an approximate one that valid only if all the forward rates are close 

to some fixed value f0 . We then have: 

     
t

xt
ef

t

xtf xt








 ,, ,

0


                (13) 
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   2

0

,



O

t

xt
f 




                (14) 

Hence we make the following mapping: 

   
t

xt
f

t

xtf








 ,,
0


                (15) 

Eq(3) then generalizes to: 

      rigiditaskinetik LLL                 
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   16) 

 

We will show later – in deriving the Hamiltonian – that the system needs a non-trivial integration measure.   

 

We hence define the theory by the Feynman path integral: 

 


  SvefDZ                 (17) 

   
 
 








 
Pxt

vv xtfxtdfD
,

,,              (18)  

 

The boundary conditions given for f (t, x) in eq(5) and (6) continue to hold for stochastic  volatility Lagrangian given 

in eq.(16). 

 

3.2. Volatility as an Independent Quantum Field 

We consider the second case where volatility σ(t, x) is taken to be an independent (stochastic) quantum field.  Since 

one can only measure the effects of volatility on the forward rates, all the effects of stochastic volatility  will be 

manifested only via the behavior of the forward rates. For simplicity, we consider the forward rate to be a quantum 

field as given in eq.(4) with: 

     xtfxtf ,:,                 (19) 

Since the volatility function σ(t, x) is always positive, that is, σ(t, x) > 0 we introduce an another quantum field h(t, 

x) by the following relation (the minus sign is taken for notational convenience): 

        xthext xth ,,, ,

00               (20) 

The system now consists of two interacting quantum fields, namely  xtf , and  xth , . The interacting system’s 

Lagrangian should  have  the following features :   

 A parameter    that quantifies the extent to which the field    xth ,  is non-deterministic. A limit of  0  

would, in effect, ‘freeze’ all the fluctuations of the field  xth , an reduce it to a deterministic function. 

 A parameter  to control the fluctuations of  xth ,  in the maturity direction similar  to the parameter µ that 

controls the fluctuations of the forward rates  xtf , in the maturity direction x   
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 A parameter  with: 11    that quantifies the correlation of the forward  rates’  quantum field 

 xtf ,  with  the  volatility  quantum  field  xth , . 

 A drift term for volatility,  namely   xt, , which  is analogous to the drift term  xt,  for the forward rates. 

 

The Lagrangian for the interacting system is not unique; there is a wide variety of choices that one can make to fulfill 

all the conditions given above. A  possible  Lagrangian  for  the  interacting  system,  written  by  analogy  with the 

Lagrangian for the case of stochastic volatility for a single security [9], is given by:  
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L

               (21) 

with action: 

   P
LhfS ,                 (22) 

We need to specify the boundary conditions for the interacting system. The initial and final conditions for the  

forward rates  xtf ,  given  in eq.(5) continue  to hold  for  the  interacting  case,  and  are  similarly  given  for  the 

volatility field as the following : 

a. Fixed  (Dirichlet) Initial and  Final  Conditions 

The initial value is specified from data, that is: 

     xTxTTxTT fiFRfi ,,,,                (23) 

specified initial and final volatility curves. 

The boundary condition in the x direction for the forward rates – as given in eq.(6) – continues to ho − for the 

interacting case, and for volatility field is similarly given by [10] 

 

b. Free (Neumann)  Boundary  Conditions   

 
  0,

,
; 

















 xt

t

xth

x
TxT fi                 (24) 

          FRTtxortx ;                    (25) 

 

On quantizing the volatility field  xt, , the boundary condition for the for- ward rate  xtf ,  given in eq.(6) is 

rather unusual.  On solving the no arbitrage condition, we will find that α is a (quadratic) functional of the volatility 

field  xt, ; hence the boundary condition eq.(6) is a form of interaction between the  xtf ,  and  xth ,  fields. 
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We need to define the integration measure for the quantum field  xth , ; the derivation of the Hamiltonian for the 

system dictates the following choice for the measure, namely : 

 

   
 
 







 
Pxt

xtdxtdfDfD
,

11 ,,                   (26)  

     

 
 






Pxt

xthextdhxtdf
,

,,,                 (27) 

 

The partition function of the quantum field theory for the forward rates with stochastic volatility is defined by 

Feynman path integral as: 


 1DfDZ                          (28) 

 

The  (observed)  market  value  of  a  financial  instrument,  say [f,h] is expressed as the average value of the 

instrument – denoted by  hf ,O , – taken over all possible values of the quantum fields   xtf , and  xth ,  -

denoted by  hfO , -, with the  probability  density  given  by  the  (appropriately  normalized)  action.   In 

symbols: 

     


 hfSehfDfD
Z

hf ,1 ,
1

, OO               (29) 

We  consider  the  limit  of  the  volatility  being  reduced  to  a  deterministic  function.   For  this  limit  we  have  

 ,  and 0 . The  kinetic  term  of the  xth ,  field in the action given  in eq.(22) has the limit (up to 

irrelevant constants) 

 







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

























































PP

P
xtxt t

ht

h

,,

2

0 2

1
explim 






             (30) 

which implies that:  

      xthext ,

0,                 (31) 

            ,,,''exp
0

0 O 
t

t
xtdt               (32) 

4. State Space Hamiltonian 

The Feynman path integral formulation given in eq(17) and (28) is useful for calculating the expectation values of 

quantum fields.  To study questions related to the time evolution of quantities of interest, one needs to derive the 

Hamiltonian for the system from its Lagrangian.  Note the route that we are following is opposite to the one taken in 

[9] where the Lagrangian for a stock price with stochastic volatility was derived starting from its Hamiltonian. The 

state space of a field theory is a linear vector space – denoted by V, that consists of functional of the field 

configurations at some fixed time terdiri atas sejumlah fungsional medan konfigurasi pada waktu terikat t (A  brief  

discussion  of  the  state  space  is  given  in  [9] ). The  dual  space  of V – denoted by Vrangkap- consists  of all linear 

mappings from V to the complex numbers, and is also a linear vector space.  Let an element of V be denoted by g  

and an element of Vrangkap by p ; then gp  is a complex number. We  will  refer  to  both  V and Vrangkap as  the  
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state  space  of  the  system. The Hamiltonian H, is an operator – the quantum analog of energy – that is an  element  

of  t tensor  product  space rangkapVV  . The  matrix  elements  of are complex numbers, and given by  gp .  

 

In this section, we study the features the state space and Hamiltonian for the forward rates. For notational brevity, we 

consider the forward rates quantum field  xtf ,  to stand for both the quantum fields  xtf ,  and  xth , . Since 

the Lagrangian for the forward rates given in eq.(21) has only first order derivatives  in  time,  an  infinitesimal  

generator, namely the Hamiltonian H exists for it. Obtaining the Hamiltonian for the forward rates is a complicated 

exercise due to the non-trivial structure of the  underlying domain P. In particular,  the  forward rates quantum field 

will be seen to  have a distinct state space for every instant t. 

 

For greater clarity, we discrete both time and maturity time into a finite lattice, with lattice  spacing in both directions 

taken to be  (For a string moving with velocity v, the maturity lattice would have spacing of  ). On the lattice, 

the minimum time for futures contract is time  ; for most applications  =1 day. The points comprising the 

discrete domain  P
~

 are shown in Figure 3.2. : 

 

Gambar 3.2. Lattice in Time and Maturity Directions in domain P
~

 

 

 

 

 

 

 

 

 

 

 

The discrete domain P
~

 is given by: 

   lnxt ,,   with  n ,l integers                (33) 

   FRfiFRfi NNNTTT ,,,,                           (34) 

    FRfi NnlnNnNln  :,
~

  lattice P              (35) 

  lnfxtf ,,                    (36) 

   
















  lnlnlnln ff

t

xtfff

t

xtf ,1,,,1 ,
;

,
              (37) 

 

The partition function is now given by a finite multiple integral, namely: 

t 

Tf 

Ti x 
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 

 

 



Pln

fS

ln edfZ
~

,

,


                          (38) 

 
n

nSS                    (39) 

Consider  two  adjacent  time  slices  labeled  by  n  and  n + 1,  as  shown  in  Figure 3.3 dibawah ini.  nS  is the 

action connecting the forward rates of these two time slices.  

Figure 3.3. Two Consecutive Time Slices for nt   and  1 nt  

 

 

 

 

As can be seen from Figure 4, for the two time slices there is a mismatch of the 2-lattice sites on the edges, namely, 

lattice sites  nn,  at time n and  FRNnn  1,1  at  time 1n  are  not  in  common. We  isloate  the un-

matched variables and have the following : 

Variables at time n : 

   FRlnnnnn NnlnfFFf   ,1,

~
;

~
,              (40) 

Variables at time  1n : 

   FRlnnNnnn NnlnfFfF
FR

  11;, ,11,1              (41) 

 

Note that although the variables nF  refer to time  1n , we label it with earlier time n for later convenience. From 

Figure 3.3 we see that both sets of variables nF  and nF
~

 cover the same lattice sites in the maturity direction  x 

namely FRNnln 1 , and hence have the same number of forward  rates, namely 1FRN . The 

Hamiltonian will be expressible solely in terms of these variables. 

 

From  the  discredited  time  derivatives  defined  in  eq.(37)  the  discredited action  nS  contains terms that couple 

only the common points in the lattice  for the two time slices, namely the variables belonging to the sets nF
~

; nF . We 

hence have for the action: 

   
 
 

l

lnlnn ffnS ,1, ,L                  (42) 

   
 


l

nnn FFnS ;
~L                  (43) 

As  shown  is  in  Figure 3.4, the  action  for  the  entire  domain P
~

 shown  in Figure 3.2 can be constructed by 

repeating the construction given in Figure 3.3 and summing over the action  nS  over all time fi NnN   

n 
n+1  
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Picture of 3.4. Reconstructing the Lattice from the Two Time Slices 

 

 

 

 

 

The  Hamiltonian  of  the  forward  rates  is  an  operator  that  acts  on  the state  space  of states  of  the  forward  

rates;  we  hence  need  to  determine  the co-ordinates of its state space.   

 

Consider again the two consecutive time slices  n and n+1 given in Figure 3.4. We interpret the forward rates for two 

adjacent instants, namely,  nnn Ff
~

,,  dan  
FRNnnn fF  1,1,  given in eq.(40) – and which appear in the action 

eq.(42) – as the co-ordinates of the state spaces V and Vdual respectively. 

For every instant of time n there is a distinct state space  nV dan n,rangkapV . The  co-ordinates of the state spaces 

nV dan 1n V are given by the tensor product of the space of state for every maturity point l namely : 

nnnln
Nnln

n Ffff
FR

~~
,, 


                (44) 

coordinate state for n,rangkapV  

FR
FR

Nnnnln
Nnln

n fFff 


  1,,1
11

1                (45) 

coordinate state for 1nV  

 

The state vector nF  belongs to the space nF  but we reinterpret nF  as  corresponding to the state space  nF  

at earlier time n, This interpretation allows us to study the system instantaneously using the Hamiltonian formalism 

consists of all possible functions of RN  forward rates  nnn Ff
~

,, . The state spaces differ for greater clarity, we 

discrete both time and maturity time into a finite lattice, with lattice  spacing in both directions taken to be  (For a 

string moving with velocity v, the maturity lattice would have spacing of  ). On the lattice, the minimum time for 

futures contract is time  ; for most applications  =1 day. The points comprising the discrete domain  P
~

 are 

shown in Figure 3.2. : 

 

r for different n by the fact that a different set of forward rates comprise its set of independent variables. Although 

the state spaces nV  and 1n V  are not the identical, there is an intersection of these two spaces, namely 1nn VV   

that covers the same interval in the maturity direction, and is coupled by the action  nS . The intersection yields a 

state space, namely nF  on which the Hamiltonian evolution of the forward rates takes place.  In symbols, we have : 

FRNnnn f   1,1F1nV                 (46) 
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nrangkapnnnrangkap f ,., FV                 (47) 

1,:  nnrangkapnnnn H VVFFH               (48) 

The Hamiltonian nH  is an element on the tensor product space spanned by  the operators nn FF
~

, namely the 

space of operators given by ndualn ,FF  . The vector spaces  nV  and the Hamiltonian nH  acting on these spaces 

is shown in Figure 3.5  

 

picture of  3.5.  Hamiltonians nH  propagating the space of Forward Rates nV  

 

 

 

 

 

 

 

 

 

Note  that  both  the  states nF  dan nF
~

 belong  to  the  same  state space nF , and we use twiddle to indicate 

that the two states are different; in contrast, for example, the two states f  and f  indicate that one state is the 

dual of the other.  

 

As one scans through all possible values for the forward rates and f̂ , one obtains a complete basis for the state 

space nV , In particular, the resolution of the identity operator for nV ,  denoted by nI  is a reflection that the basis 

states are complete, and is given by [9] : 





FRNnln

nnlnn ffdf ,I                 (49) 

     nnnnnnnnn FfFfFddf
~

;
~

;
~

. ,,,                 (50) 

The  Hamiltonian  of  the  system H  is  defined  by  the  Feynman  formula (up to a normalization), from eq.(42), 

has:  

 
 

FR

nl lnlnn

Nnnnnnn

ff

n fFeFfe 




 

1,1,

,

,
~

,
1, HL

              (51) 

where  in general n  is  a field-dependent  measure  term.  Using  the property  of the discrete action given in 

eq.(43), we have : 

nH  

1nH  

nV  

1nV  

2nV  
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 
 

FR

nl nnn

Nnnnnnn

FF

n fFeFfe 






1,1,

~
,

,
~

,
HL

               (52) 

                              nn FeF nH
~

               (53) 

 

Equation (53) is the main result of this Section. 

In  going  from  eq.(52)  to  eq.(53)  we  have  used  the  fact  that  the  action connecting  time  slices n and 1n  

does  not  contain  the  variables nnf , and 
FRNnf 1  respectively. This leads to the result that the Hamiltonian 

consequently does not depend on these variables. The interpretation of eq.(53) is that the Hamiltonian propagates the 

initial state nF
~

 in time   to the final state nF . Note the relation: 

nnNnnnnnn FeFfFeFf n

FR

n HH 






~
,

~
, 1,1,               (54) 

shows that there is an asymmetry in the time direction, with the Hamiltonian being independent of the earliest 

forward rate fn, n  of the initial state and of the latest forward rate nnf ,  , 
FRNnf 1  of the final state. It is this 

asymmetry in the propagation of the forward rates which yields the parallelogram domain P
~

 given in Figure 3.2, 

and reflects the asymmetry that the forward rates   xtf ,  exist only for tx  .  

 

For notational simplicity, we henceforth use continuum notation; in particular,  the  state  space  is  labelled by tV , 

and  state  vector  by tf . The elements of the state space of the forward rates  tV  includes all the financial 

instruments that are traded in the market at time t. In continuum notation from eq.(45), we have that: 

 xtff
FRTtxt

t ,


                  (55) 

 xtfF
FRTtxt

t ,


                  (56) 

In continuum  notation,  the only difference  between  state  vectors tf  and tF  is that, in eq.(56), the point 

tx   is excluded in the continuous tensor product.  

 

The partition function Z given in eq.(38) can be reconstructed from the Hamiltonian by  recursively applying the 

procedure discussed for the two time slices.  We then have, in continuum notation, that : 
 


fSefDZ                   (57) 

final

T

T
tinitial fdtf

f

i 












  HT exp               (58) 

 

where the symbol T  in the equation above stands for time ordering the (non- commuting) operators in the 

argument, with the earliest time being placed to the left. 

 

 

 

 



 Quantitative Methods, Vol. 5, No. 2,   June 2009  

 
86 

5. Conclusion 
We made a generalization of the field theory model for the forward rates to account for stochastic volatility by 

treating volatility either as a function of the  forward  rates  or  as an  independent  quantum  field. In  both  cases,  

the Feynman path integral could be naturally extended to account for stochastic volatility For  the  case  of  

deterministic  volatility,  it  was  found  in  [10]  that  in  effect the two dimensional quantum field theory reduced to 

a one-dimensional problem due to the specific nature of the Lagrangian.  However, on treating volatility as a 

quantum field, the theory is now irreducibly two-dimensional, and displays all the features of a quantum field theory.  

 

To obtain the Hamiltonian of the forward rates, we were in turn led to an analysis of the underlying state space of the 

system, which turned out to be non-trivial due to the parallelogram domain on which the forward rates are defined. 

The Hamiltonian for the forward rates is  an independent formulation of the theory of the forward rates, and can lead 

to new insights on the behaviour of the forward rates. The model for the forward rates with stochastic volatility has a 

number of free parameters that can only be determined by studying the market. Hence on needs to be numerically 

analyze the model so as to calibrate it, and to test its ability to explain the market’s behaviour. The first step in this 

direction has been taken in [11] and these calculations are now being extended to the case of stochastic volatility. 
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