Tuesday, 3rd Nov 2009

Today's Topics:

- I really appreciate If all Of U can stand till the end of the course because of the language that U choose for U in this session
- Homework 6:
 - Sorry for delay
 - (I've got sick)
- Last Quis:
 - Average: 65%
- Now:
 - Linear momentum
 - Collision

Linear Momentum

• **Definition:** For a single particle, the linear momentum **p** is defined as: (**p** is a vector since **v** is a

vector).

 $\mathbf{p} = m\mathbf{v}$

So $p_x = mv_x$ etc.

• Newton's 2nd Law:

$$\mathbf{F} = m\mathbf{a} = m\frac{\Delta\mathbf{v}}{\Delta t} = \frac{\Delta(m\mathbf{v})}{\Delta t} \quad \blacksquare \quad \mathbf{F} = \frac{\Delta\mathbf{p}}{\Delta t}$$

• Units of linear momentum are kg m/s.

Impulse-momentum theorem:

• The impulse of the force action on an object equals the change in momentum of the object:

 $F\Delta t = \Delta p = mv_f - mv_i$

Impulse has units of Ns.

Impulse $\equiv F \Delta t = \Delta p$

 The impulse imparted by a force during the time interval ∆t is equal to area under the force-time graph from beginning to the end of the time interval.

Average Force and Impulse

- The concept of momentum conservation is one of the most fundamental principles in physics.
- This is a component (vector) equation.
 - We can apply it to any direction in which there is no external force applied.
- You will see that we often have momentum conservation even when energy is not conserved.

Elastic vs. Inelastic Collisions

- A collision is said to be *elastic* when energy as well as momentum is conserved before and after the collision.
 K_{before} = K_{after}
 - Carts colliding with a spring in between, billiard balls, etc.

 A collision is said to be *inelastic* when energy is not conserved before and after the collision, but momentum is conserved.
 K_{before} ≠ K_{after}

Car crashes, collisions where objects stick together, etc.

Inelastic collision in 1-D: Example 1

- A block of mass *M* is initially at rest on a frictionless horizontal surface. A bullet of mass *m* is fired at the block with a muzzle velocity (speed) *v*. The bullet lodges in the block, and the block ends up with a speed *V*. In terms of *m*, *M*, and *V*:
 - What is the momentum of the bullet with speed v?
 - What is the initial energy of the system ?
 - What is the final energy of the system ?
 - Is energy conserved ?

Example 1...

 Consider the bullet & block as a system. After the bullet is shot, there are no external forces acting on the system in the x-direction Momentum is conserved in the x direction !

$$- P_{x,before} = P_{x,after}$$
$$- mv = (M+m) V$$

$$V = \left(\frac{M+m}{m}\right)V$$

X

$$V = \left(\frac{M+m}{m}\right)V$$

Example 1...

- Now consider the energy of the system before and after:
- Before:

• After:
$$E_B = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{M+m}{m}\right)^2 V^2 = \frac{1}{2}\left(\frac{M+m}{m}\right)(M+m)V^2$$

$$E_A = \frac{1}{2}(M+m)V^2$$

$$E_{A} = \left(\frac{m}{M+m}\right)E_{B}$$

Energy is NOT conserved (friction stopped the bullet) However momentum was conserved, and this was useful.

Inelastic Collision in 1-D

Winter in Storrs

Inelastic Collision in 1-D

M = 2m

 $V_f = A = 0$ B) $V_o/2$ C) $2V_o/3$ D) $3V_o/2$ E) $2V_o$

Inelastic Collision in 1-D

Use conservation of momentum to find v after the collision.

Before the collision:

 $P_{i} = MV_{0} + m(0)$

After the collision:

 $\boldsymbol{P}_f = (M+m)\boldsymbol{V}_f$

Conservation of momentum: $\begin{array}{c} P_i = P_f \\ MV_0 = (M+m)V_f \end{array} \end{array}$

$$\square \bigvee \mathbf{V}_f = \frac{M}{(M+m)} \mathbf{V_o} = \frac{2m}{(2m+m)} \mathbf{V_o} = \frac{2}{3} \mathbf{V_o}$$

C) 2V ₀ /3	
-----------------------	--

- Two balls of equal mass are thrown horizontally with the same initial velocity. They hit identical stationary boxes resting on a frictionless horizontal surface.
- The ball hitting box 1 bounces back, while the ball hitting box 2 gets stuck.
 - Which box ends up moving fastest ?
 - (a) Box 1 (b) Box 2 (c) same

- Since the total external force in the x-direction is zero, momentum is conserved along the x-axis.
- In both cases the initial momentum is the same (*mv* of ball).
- In case 1 the ball has negative momentum after the collision, hence the box must have more positive momentum if the total is to be conserved.
- The speed of the box in case 1 is biggest !

X

 V_1 numerator is bigger and its denominator is smaller than that of V_2 .

Inelastic collision in 2-D

 Consider a collision in 2-D (cars crashing at a slippery intersection...no friction). V_1 $m_1 + m_2$ m_1 *m*₂ . before after

Inelastic collision in 2-D...

- There are no net external forces acting.
 - Use momentum conservation for both

components. $P_{x,a} = P_{x,b} \implies m_1 v_1 = (m_1 + m_2) V_x \implies V_x = \frac{m_1}{(m_1 + m_2)} v_1$

$$P_{y,a} = P_{y,b} \Rightarrow m_2 v_2 = (m_1 + m_2) V_y \Rightarrow V_y = \frac{m_2}{(m_1 + m_2)} v_2$$

Inelastic collision in 2-D...

So we know all about the motion after the collision !

 $V_x = \frac{m_1}{(m_1 + m_2)} V_1$ $V_y = \frac{m_2}{(m_1 + m_2)} V_2$

$$tan \theta = rac{V_y}{V_x} = rac{m_2 v_2}{m_1 v_1} = rac{p_2}{p_1}$$

Inelastic collision in 2-D...

• We can see the same thing using vectors:

Explosion (inelastic un-collision)

Before the explosion:

After the explosion:

Explosion...

- No external forces, so **P** is conserved.
- Initially: **P** = 0
- Finally: $P = m_1 v_1 + m_2 v_2 = 0$

Center of Mass

A bomb explodes into 3 identical pieces. Which of the following configurations of velocities is possible?
 (a) 1
 (b) 2
 (c) both

Solution

- No external forces, so **P** must be conserved.
- Initially: **P** = 0
- In explosion (1) there is nothing to balance the upward momentum of the top piece so $P_{final} \neq 0$.

m

mv

Solution

- No external forces, so *P* must be conserved.
- All the momenta cancel out.
- $P_{final} = 0.$

Comment on Energy Conservation

- We have seen that the total kinetic energy of a system undergoing an inelastic collision is not conserved.
 - Energy is lost:
 - Heat (bomb)
 - Bending of metal (crashing cars)
- Kinetic energy is not conserved since work is done during the collision !
- Momentum along a certain direction is conserved when there are no external forces acting in this direction.
 - In general, easier to satisfy than energy conservation.

Ballistic Pendulum

A projectile of mass *m* moving horizontally with speed *v* strikes a stationary mass *M* suspended by strings of length *L*. Subsequently, *m* + *M* rise to a height of *H*.

Given H, what is the initial speed v of the projectile?

Ballistic Pendulum...

- Two stage process:
 - *m* collides with *M*, <u>inelastically</u>. Both *M* and *m* then move together with a velocity *V* (before having risen significantly).
 - 2. *M* and *m* rise a height *H*, <u>conserving energy</u> *E*. (no non-conservative forces acting after collision)

Ballistic Pendulum...

Stage 1: <u>Momentum is conserved</u>

in x-direction: mv = (m + M)V

$$V = \left(\frac{m}{m+M}\right)v$$

• Stage 2: Energy is conserved

 $(E_I = E_F)$ $\frac{1}{2}(m+M)V^2 = (m+M)gH \qquad \Longrightarrow \qquad V^2 = 2gH$

Eliminating V gives:

$$v = \left(1 + \frac{M}{m}\right)\sqrt{2gH}$$

Ballistic Pendulum

• If we measure the forward displacement *d*, not *H*:

Ballistic Pendulum

$$H = L - \sqrt{L^{2} - d^{2}}$$

$$= L - L\sqrt{1 - \frac{d^{2}}{L^{2}}} \approx L - L\left(1 - \frac{d^{2}}{2L}\right) \approx \frac{d^{2}}{2L} \quad \text{for} \quad \frac{d}{L} << 1$$

$$v = \left(1 + \frac{M}{m}\right)\sqrt{2gH} \quad \Longrightarrow \quad v = \left(1 + \frac{M}{m}\right) \cdot d \cdot \sqrt{\frac{g}{L}}$$

for *d* << *L*

• See Cutnell :

p.

Number :

please submit by your attach files as usual before early wed next week (11th Nov, 2009)

All of assignment is not an easy homework, so please do early