Gas Laws

Ideal Gas Law Equation of State

Relationship between the variables that describe a gas, could be a parcel of air, or the entire atmosphere

Gas Variables

- Pressure - intensity of force applied to the parcel of gas (force/area)
- Volume - 3D space occupied by the parcel of gas
- Mass - quantity of gas in the parcel, measured in mass units
- Density - mass/volume
- Temperature - measure of average kinetic energy of the gas

Different Views of Pressure in the Atmosphere

1. At the surface of the earth or a given height above sea level
Pressure is the weight of the atmosphere per unit area (lbs/sq.in.)
2. For a parcel of air

Pressure is the intensity of force applied either externally or internally (lbs/sq.in.)

Pressure is Isotropic

- Isotropic - equal in all directions
- Gas must be in equilibrium - not moving

Hydrostatic Equilibrium

Hydrostatic Equilibrium

- Pressure decreases with height
- Net Force is upward due to difference in pressure on bottom and top of parcel
- Force of gravity depends on mass in parcel
- Force of gravity balances force due to pressure differences

Pressure Layers

Gas Laws

Boyle's Law 1660

Relationship of
Pressure a nd
Volume
Temperature is
constant

Boyle's Law - Data

P	V	$\mathrm{P} \times \mathrm{V}$
1	1	1
2	$1 / 2$	1
3	$1 / 3$	1
4	$1 / 4$	1

Boyle's Law Summary

Pressure and Volume of a gas are Inversely proportional (if the temperature is constant)
$($ Pressure $) x($ Volume $)=$ Constant Value

Boyle's Law Example

1. Start: $P=1000 \mathrm{mb}$

$$
\mathrm{V}=3 \mathrm{~m}^{3}
$$

2. $\mathrm{P} \times \mathrm{V}=1000 \times 3=3000$ (constant value)
3. Finish $\mathrm{P}=700 \mathrm{mb}$, ? What is V
4. $\mathrm{P} \times \mathrm{V}=3000$
$700 \mathrm{x}(\mathrm{V})=3000$
$\mathrm{V}=3000 / 700=4.3 \mathrm{~m}^{3}$

Gas Laws

Charles Law
Temperature and Volume

Pressure is
Constant

Constant Force
Constant Pressure

Charles' Law - Data

T	V	Tx V	V / T
1	1	1	1
2	2	4	1
3	3	9	1
$1 / 2$	$1 / 2$	$1 / 4$	1

Charles’ Law Summary

Temperature and Volume are Directly proportional (if pressure is constant)
$($ Volume $) /($ Temperature $)=$ Constant Value

Charles’ Law Example

1. Start: $\mathrm{V}=5 \mathrm{~m}^{3}, \mathrm{~T}=200 \mathrm{~K}$
2. $\mathrm{V} / \mathrm{T}=5 / 200=0.025$ (constant value)
3. Finish: $\mathrm{T}=350 \mathrm{~K}$, ? What is V
4. $\mathrm{V} / \mathrm{T}=0.025$
$\mathrm{V} / 350=0.025$

$$
\mathrm{v}=(0.025) \mathrm{x}(350)=8.75 \mathrm{~m}^{3}
$$

Ideal Gas Law

Relationship when P, V, and T may all be changing

Combination of Boyle's Law and Charles' Law

Ideal Gas Law

$(\mathrm{P} x \mathrm{~V}) / \mathrm{T}=\mathrm{Constant}$ Value

Ideal Gas Law - Example

1. Start: $\mathrm{P}=1000 \mathrm{mb}, \mathrm{V}=12 \mathrm{~m}^{3}, \mathrm{~T}=280 \mathrm{~K}$
2. $(\mathrm{PxV}) / \mathrm{T}=(1000 \times 12) / 280=42.85$
3. Finish: $\mathrm{P}=600 \mathrm{mb}, \mathrm{T}=240 \mathrm{~K}$, What is V
4. $(\mathrm{PxV}) / \mathrm{T}=42.85$
$(600 x V) / 240=42.85$
$2.5 \mathrm{xV}=42.85$
$\mathrm{v}=42.85 / 2.5=17.1 \mathrm{~m}^{3}$

Pressure Layers

-TABLE 8.1

Common Isobaric Charts and Their Approximate Elevation above Sea Level

ISOBARIC SURFACE $(M B)$ CHARTS	APPROXIMATE ELEVATION (m)	(ft)

Cross Section of an Isobaric Surface

Warm
Cold

Pressure - Height - Temperature

	WARM	COLD
SURFACE	LOW Pressure	High Pressure
UPPER LEVELS	HIGH Pressure (Ridge)	LOW Pressure (Trough)

TANK A
TANK B

Dalton's Law of Partial Pressures

- Suppose you have a gas that is a mixture of gases A, B, and C (nitrogen, oxygen, and water vapor)
- The gas has a pressure of P_{t}
- The pressures of gases A, B, and C by themselves are $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}$, and P_{C}
-

$$
P_{t}=P_{A}+P_{B}+P_{C}
$$

