Applications of Vector Analysis and Fourier Series and Its Transforms

By Chance Harenza

Vector Analysis

Engineering, Meteorology, Electromagnetism, Oceanography, Astrophysics, Geology

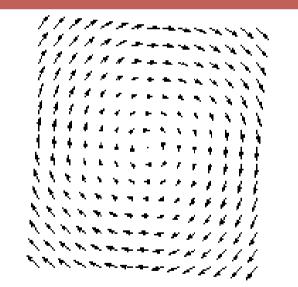
Curl of Vector Field: "rotation"

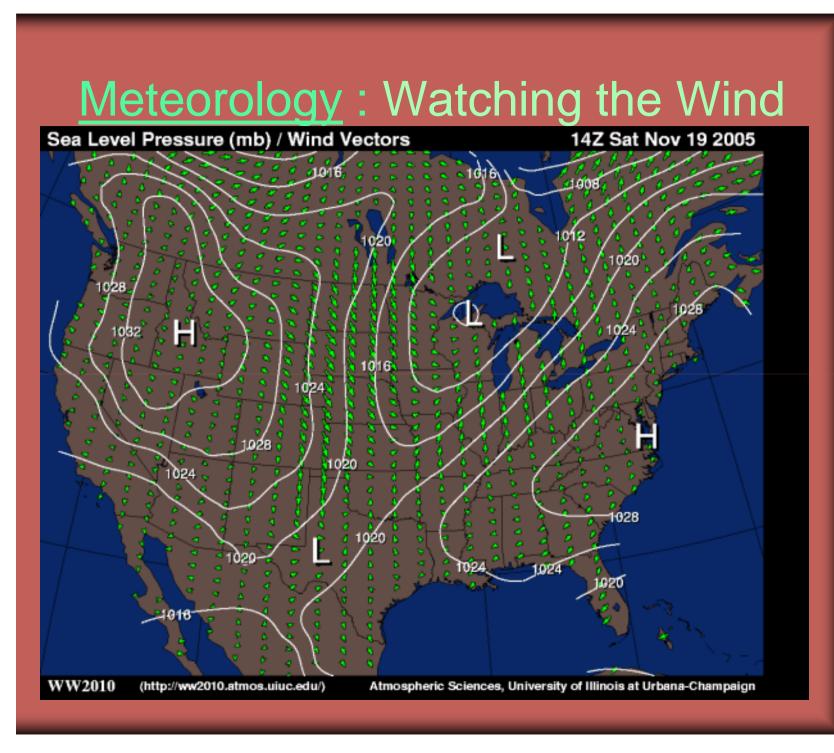
$$\nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{\chi} & F_{\chi} & F_{z} \end{vmatrix},$$

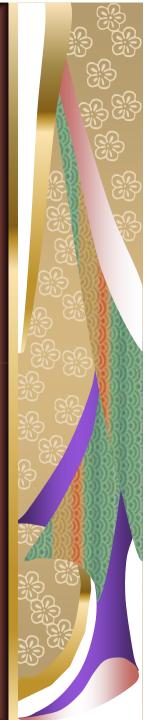
Directional Derivative

$$\nabla_{\hat{\mathbf{u}}} f = \frac{\partial f}{\partial x} \, u_x + \frac{\partial f}{\partial y} \, u_y + \frac{\partial f}{\partial z} \, u_z.$$

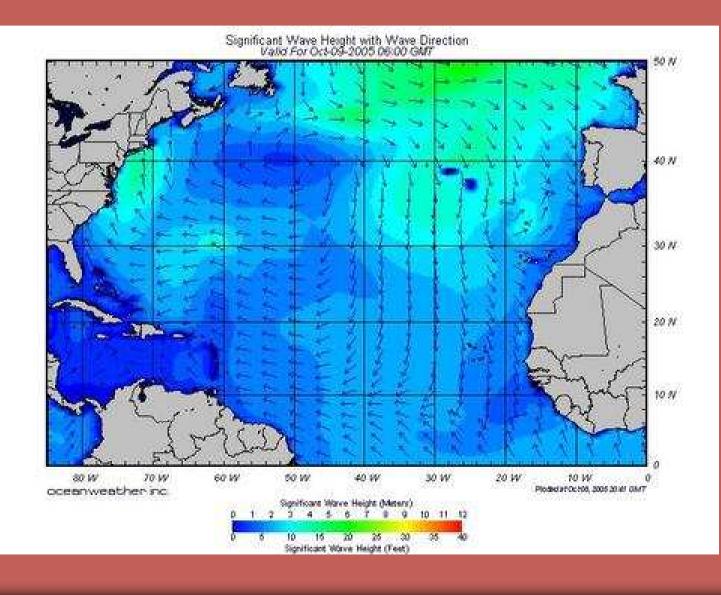
Vector Field



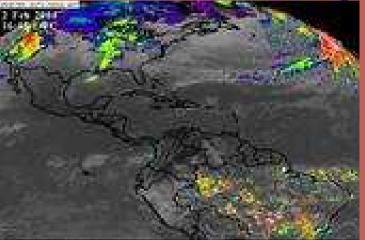




Oceanography : Tracking currents



Tracking and launching



Satellites tracking java program
 http://science.nasa.gov/Real time/JTrack/3d/JTrack3D.ht ml
 F12= - <u>G (m1*m2)</u> r G=6.67e-11 (R21)²

r is the unit vector

Space stations tracked
 <u>http://science.nasa.gov/temp</u>/StationLoc.html

<u>Geology</u>: Geophysics The Movement of the Plates

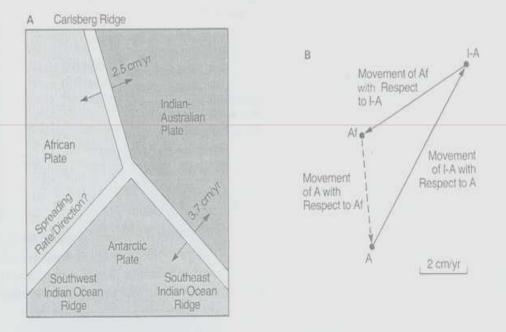
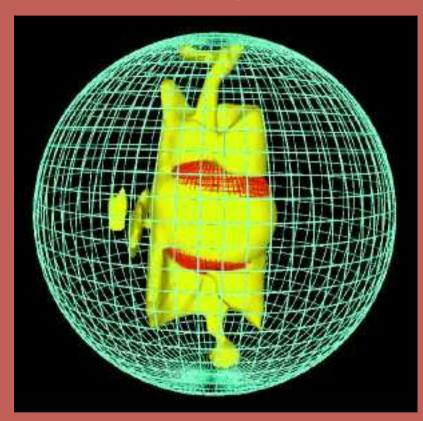
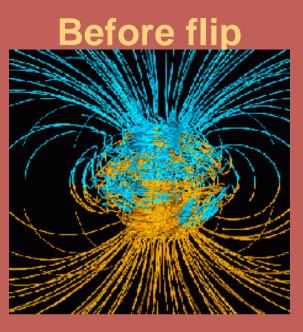


Figure 10.63 Relative motion among plates at the ridge-ridge triple junction between the Indian-Australian, African, and Antarctic plates. (A) Configuration and half-spreading rates. (B) Vector circuit diagram to determine the relative velocity of the Antarctic plate with respect to the African plate.

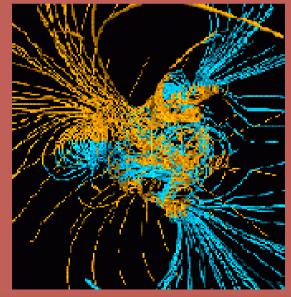
Coriolis effect on Magma



Orange is south Blue is north

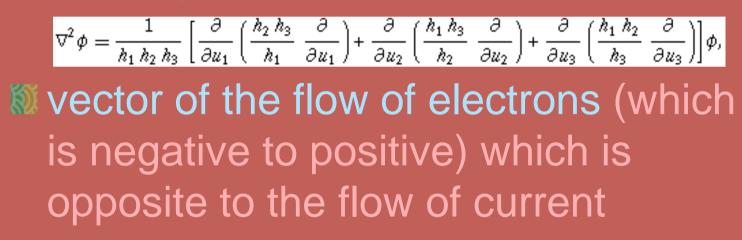


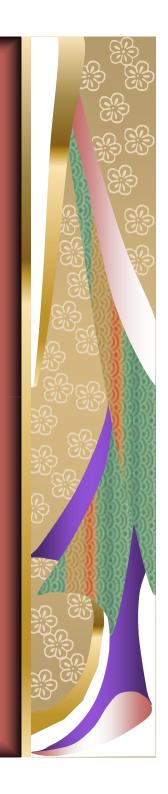
During flip



Electromagnetics, Wave theory, and Quantum mechanics

The Laplacian





Fourier Series and Its Transforms The average value of sin(nx) over a period equals the average value of Cos(ns) over a period which equals one half

$$\begin{aligned} \boldsymbol{\alpha_0} &= \frac{1}{L} \int_{-L}^{L} f(\mathbf{x}') \, d\mathbf{x}' \\ \boldsymbol{\alpha_n} &= \frac{1}{L} \int_{-L}^{L} f(\mathbf{x}') \cos\left(\frac{n \, \pi \, \mathbf{x}'}{L}\right) d\mathbf{x}' \\ \boldsymbol{b_n} &= \frac{1}{L} \int_{-L}^{L} f(\mathbf{x}') \sin\left(\frac{n \, \pi \, \mathbf{x}'}{L}\right) d\mathbf{x}'. \end{aligned}$$

Fractional Fourier Transform

$$F_n = \sum_{k=0}^{N-1} f_k \, e^{2 \, \pi \, i \, b \, n \, k/N}.$$

$$f(\mathbf{x}) = \sum_{n=-\infty}^{\infty} A_n e^{inx}.$$

Fractional Fourier Transforms

<u>Geophysics</u>: 2 dimensional data of seismic motion :fan-filters
 <u>Finding oil resources</u>

Image recovery

Synthesizers

(C)

Figure 9

(d)

Differential equations: $f'(x) = \sum (-na_n sinnx + nb_n cosnx)$ n=1

Other Fourier Transform

- Definition of Fourier Transform f(x) = 1/(2) g(t) e^(i tx) dt
- Inverse Identity of Fourier Transform
 g(x) = 1/(2) f(t) e^(-i tx) dt
 Fast Fourier Transform
- Discrete fourier transform
- discrete <--> discrete

$$G_k = \sum_{j=0}^N g_j e^{-2\pi\nu_k i j/f}$$

The future of physics

 Satellites, Microwaves, Radio waves, and electrical devices
 Electromagnetic, Electric fields, Magnetic fields, currents of Flow

depends on fourier and vector techniques

<u>Good sites</u>

<u>http://mathworld.wolfram.com/</u>

http://science.nasa.gov/Realtime/JTra ck/3d/JTrack3D.html

http://science.nasa.gov/temp/StationL oc.html



Fast Fourier Transform

The fast Fourier transform (FFT) is a <u>discrete</u> Fourier transform algorithm which reduces the number of computations needed for points from to, where Ig is the base-2 logarithm. If the function to be transformed is not harmonically related to the sampling frequency, the response of an FFT looks like a sinc function (although the integrated power is still correct). Aliasing (leakage) can be reduced by apodization using a tapering function. However, <u>aliasing</u> reduction is at the expense of broadening the spectral response.

Common Fourier Transform

function	$f(\mathbf{x})$	$F(k) = \mathcal{F}_{x}[f(x)](k)$
Fourier transform1	1	δ (k)
Fourier transformCosine	cos (2 π k ₀ x)	$\frac{1}{2}\left[\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)\right]$
Fourier transformDelta function	$\delta(x-x_0)$	$e^{-2\pi ikx_0}$
Fourier transformExponential function	$e^{-2\pi k_0 x }$	$\frac{1}{\pi} \frac{k_0}{k^2 + k_0^2}$
Fourier transformGaussian	e ^{-a x²}	$\sqrt{\frac{\pi}{a}} e^{-\pi^2 k^2/a}$
Fourier transformHeaviside step function	H (x)	$\frac{1}{2}\left[\delta\left(k\right)-\frac{i}{\pi k}\right]$
Fourier transformInverse function	$-PV \frac{1}{\pi x}$	i [1-2 H (-k)]
Fourier transformLorentzian function	$\frac{\frac{1}{\pi}}{\pi} \frac{\frac{\frac{1}{2}\Gamma}{(x-x_0)^2 + \left(\frac{1}{2}\Gamma\right)^2}}$	e ^{-2πikx} ₀-Γπk
Fourier transformRamp function	R(x)	$\pi i \delta' (2 \pi k) - \frac{1}{4\pi^2 k^2}$
Fourier transformSine	$\sin\left(2\ \pi\ k_0\ x\right)$	$\frac{1}{2} i \left[\delta \left(k + k_0 \right) - \delta \left(k - k_0 \right) \right]$

