

Ca-bentonite Structure

Anna Permanasari, Wiwi Siswaningsih, Zackiyah, Fitri Choerunnisa

The efficiency of carbaryl and diazinone adsorption onto

Introduction

From the previous study, Histidine-bentonite is founded as the most powerful adsorbent for pestisides residues in water. It is very interesting to know more over about kinetics, mechanism, and capacity of adsorption.

Result and Discussion

histidine-betonite became smoother

	Parameter Kinetics		
Adsorbents	k (minute ⁻¹)	K(mol/ L) ⁻¹	
Ca-Bentonite	2,1 x 10 ⁻⁷	1,7943 x 10 ⁴	
His- bentonite	20,7 x 10 ⁻⁷	26,998 x 10 ⁴	

Study on adsorption mechanism of diazinone onto

histidine-bentonite adsorbent

No.	Interaction Mechanism	[Diazinon] (mg/L)	% Contribution
1	Trapping	0	0%
2	Complex formation (Na-citrate)	0,41	3,83%
3	Ion exchange (NaCl)	1,485	13,88%
4	Hydrogen bonding (NaOH)	6,12	57,20%
5	Other mechanism	2,684	25,09%
	Sum	10,699	100%

Adsorption of diazinone onto histidine-bentonite through the chemical interaction. This is due to the adsorption energy as much as 21,854 kJ/mol, larger than minimum chemical adsorption energy (20,82 kJ/mol)

faster by histidine-

Diazinone Adsorption Capacity

Langmuir			Freundlich			
K(ads) (L/mol)	q _m (mg/g)	E (kJ/mol)	R ²	q _m (mg/g)	1/n	R ²
2,10E-02	6,660	21,854	0,9716	1,4856	0,898	0,9757

The adsorption process is depend on Langmuir Isoterm adsorption. Every active site is content of a molecule adsorbate.

Conclusion

The mechanism of diazinone adsorption onto histidine-bentonite adsorbent was dominated by hydrogen bonding (chemisorptions). This is deal with the adsorption energy that was found as much as 21.854 kJ/mole. The chemisorptions phenomena has good relation to the great capacity of adsorption that has found to be 6,660 mg/g (Langmuir approach) and 1,487 mg/g (Freundlich approach), larger than adsorption by raw bentonite.

Literature:

Srasra, E. & Abbes, I.B. (2006). Synthesis of an organic-inorganic hybrid material by solid state intercalation of 2mercaptopyridine into Na-, Al(III)- and Co(II)-montmorillonite. J. Bull. Matter. Sci., 29 (3), 251-259. Benefield, Larry., Judkins, Joseph., Weand, Barron. (1982). Process Chemistry For Water and Wastewater Treatment. Prentice Hall. 202-208

Chun, Yuan, Sheng, Guangyou, Boyd, Stephen. (2003). "Sorptive Characteristics of Tetraalkylammonium-Exchanged Smectite Clay". The Clay Mineral Society. Vol.51, No.4. 415-420.

Cruz-Guzman, Marta., Celis, Rafael, Hermosin. (2003). "Adsorption of the Herbicide Simazine by Monmorillonite Modified With Natural Organic Cation". Enviromental Science & Technology. Vol 38, No. 1. 180-181 Dentel, Steven. (1996). Use of Organoclay Adsorbent Materials for Groundwater Treatment Application. University of Delawer.

Thank to: DP3M Dikti for funding the research trough the Foundamental research grant.