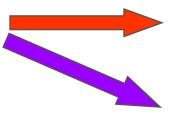

KCKT/HPLC

JURUSAN PENDIDIKAN KIMIA U P I BANDUNG 2001

Skema Alat HPLC

Keunggulan KCKT: - Untuk zat yg labil & tidak mudah menguap


- dilakukan pada suhu kamar
- dapat untuk senyawa anorganik & M_r besar

Prinsip kerja & Instrumentasi

- I.Fasa gerak → zat cair (eluen/pelarut)
 - a. Syarat : Pelarut yang baik untuk cuplikan, murni, jernih, tidak kental, sesuai dengan detektor.
 - b. Jenis : interaktif → t_r dipengaruhi
 - non interaktif → t, tidak dipengaruhi
 - kepolaran

b. Jenis : - interaktif \rightarrow t_r dipengaruhi

- non interaktif → t_r tidak dipengaruhi
- kepolaran

- fasa normal

(fasa gerak non polar)

- fasa terbalik

(fasa gerak non polar)

c. Dasar pemilihan → trial & error

- untuk 2 3 komponen K' = 2 5
- untuk multikomponen K' = 0,5 20

II. Pompa → motor penggerak fasa gerak

- a. Syarat: tekanan, P = 6000 psi (pons/inc²)
 - bebas pulsa, V = 0.1 10 mL/menit
 - tahan korosi

b. Jenis:

- P. reciprocating :ger. Piston ada peredam udara vol kecil
 - $(35 400 \mu L)$, P > 10.000 psi, V konstan
- P. displacement :spt siring, V konstan
- P. pnematik :pendorong adalah gas bertekanan tinggi,

bebas pulsa, P < 20.000 psi, V tidak konstan

III. Pemasukkan cuplikan

a. Syarat: tekanan tidak turun

b. Teknik:

injeksi syringe: disuntikkan melalui septum,(tahan P = 1500 psi)

- injeksi stop-flow: aliran pelarut dihentikan sementara
- loop (kran cuplikan) Posisi load
 Posisi injek

IV. Kolom

a. Kolom analitik:

- ϕ = 5 - 30 cm, ϕ = 4 - 10 mm, paking dengan ϕ = 3 - 10 cm, N = 40.000 - 60.000 plat/meter.

- jenis : C-18, C-8, sianopropil, penukar ion

CH₃
Dibuat dari
$$CH_3$$

$$Cl - Si - R + Si - OH + \rightarrow Si - O - Si - R$$

$$CH_3$$

$$CH_3$$

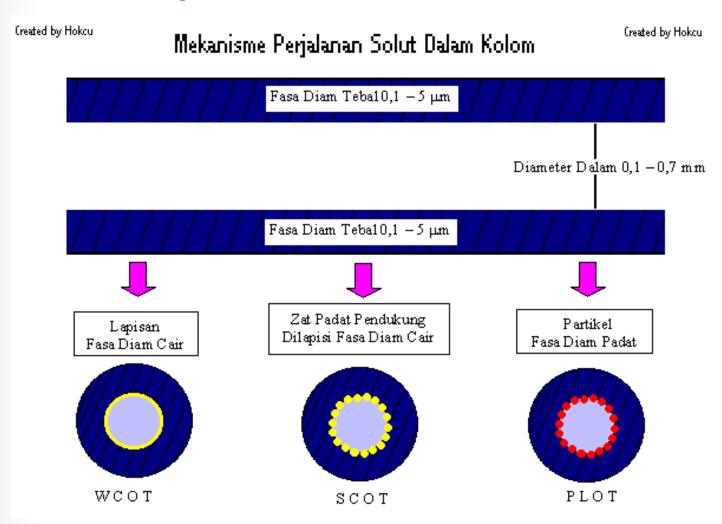
b. Kolom pengaman/guard kolom:

- $-\phi = 5$ cm, $\phi = 4 6$ mm, ϕ partikel > dari a
- fungsi: Menyaring kotoran

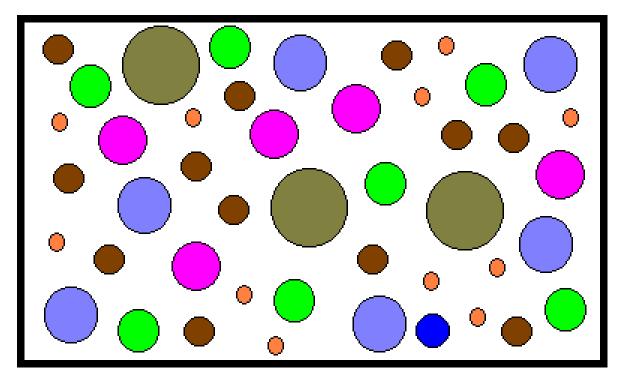
 Menjenuhkan fasa diam

V. Detektor

a. Syarat:


- respon v_s solut linier,
- t respon pendek,
- tidak merusak cuplikan

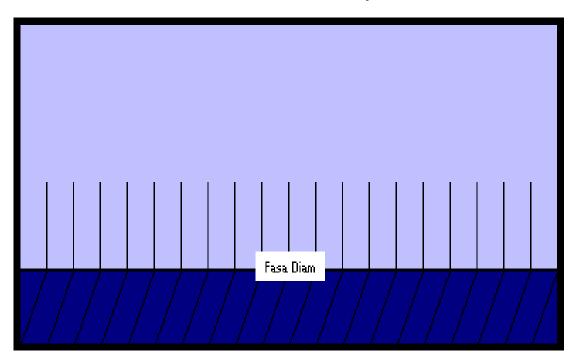
b. Jenis:


- UV \rightarrow untuk senyawa organik, λ biasanya 254 nm

Tinjauan teoritis

- 1. Retensi perbedaan daya ikat solut terhadap fasa diam
- 2. Band Broadening diakibatkan oleh:
 - penyebaran & pengenceran senyawa dalam kolom
 - partikel fasa diam tidak merata \rightarrow difusi Eddy
 - transfer massa → terperangkapnya fasa gerak pada poripori paking kolom

Eddy Diffusion



Created by Hokcu

Created by Hokou

Transfer Massa Non-Equilibrium

Created by Hokou

3. Efisiensi

- persamaan Knox

$$\mathbf{H} = \mathbf{A}\mathbf{V}^3 + \frac{\mathbf{B}}{\mathbf{A}} + \mathbf{C}\mathbf{V}$$

4. Resolusi

Mode operasional

Isokratik: tetap

Gradien: variasi

ANALISIS LEMAK

- I. Pendahuluan
- 1.1. Pengertian
- Lemak adalah bagian dari senyawa lipid berupa triasil gliserol
- Ada macam-macam lemak:
 - + lemak hewani → banyak mengandung kolesterol
 - + lemak nabati → banyak mengandung fitosterol dan asam lemak tak jenuh ↓ sehingga bentuk cair disebut minyak

Selain itu minyak nabati mengandung asam-asam lemak essensial, seperti:

- asam linoleat:
- asam linolenat
- asam arakidonat→ untuk mencegah penyempitan pembuluh darah akibat penumpukan kolesterol.

1.2. Hidrolisis dan Penyabunan

- dengan adanya air, lemak dapat terurai menjadi: gliserol dan asam lemak, reaksi ini dikatalisisoleh adanya basa, asam dan enzim-enzim - Penyabunan adalah terhidrolisisnya lemak oleh pemanasan dengan alkali menghasilkan sabun dari komponen asam lemaknya.

$$\begin{array}{c} \textbf{lemak} \\ \textbf{malam} \\ \textbf{fosfolipid} \end{array} + \begin{array}{c} \textbf{asam} \\ \textbf{Na-as. lemak} \end{array} + \begin{array}{c} \textbf{gliserol} \\ \textbf{+ alkohol} \end{array} + \begin{array}{c} \textbf{Na_3PO_4} \\ \textbf{+ amina} \end{array}$$

1.3. Asam Lemak

- di alam berupa:
- asam-asam monokarboksilat
- rantai tak bercabang jenuh dan tak jenuh
- jumlah atom C genap $(C_2 C_{30})$

- contoh-contoh asam lemak

 C_4 : asam butirat/butanoat

C₆ : asam kaproat/heksanoat

C₁₈: asam stearat/oktadekanoat

C_{18:1}: asam oleat/9-oktadekaenoat

C_{18:2}: asam linoleat/9,12-oktadekadienoat

 $C_{18:3}$: asam linolenat/9,12,15-oktadekadienoat

1.4. Lemak sebagai emulsifier

- emulsi adalah suatu dispersi/suspensi suatu cairan dalam cairan yang lain, dimana molekul-molekul kedua cairan tidak saling bercampur

- emulsifier adalah senyawa yang mempunyai bentuk molekul yang dapat terikat pada minyak maupun air
- $o/w \rightarrow contoh susu$
- w/o → contoh mentega & margarin

II. Analisis

2.1. PenetapanLemak Kasar

A. Metode Ekstraksi soxhlet

- untuk sampel berbentuk padat/tepung
- prinsip: lemak diekstraksi dengan dietil eter, pelarut diuapkan, lemak ditimbang dan dihitung %

- Langkah kerja

- timbang sampel, bungkus rapat dengan kertas saring
- refluks sampai larutannta jernih
- distilasi → untuk pemisahan pelarut
- keringkan dalam oven sampai suhu larutan 105°C
- timbang

% lemak =
$$\frac{\text{berat lemak (g)}}{\text{berat sampel (g)}} \times 100\%$$

A. Metode Babcock

- biasanya untuk sampel susu cair
- prinsip: penggunaan H₂SO₄ untuk menghancurkan emulsi sehingga fasa air dan lemak terpisah
- Langkah kerja
 - $susu + H_2SO_{4(p)}$ dikocok sampai larut (dlm botol Babcock)
 - disentrifuse pada suhu $\pm 60^{\circ} C$
 - ukur panjang kolom lemak pada bagian atas

2.2. Pengujian Ketakjenuhan

- biasanya menggunakan bilangan iodium, yaitu jumlah gram I_2 yang diserap oleh 100 gram lipid.
- prinsip: I₂ mengadisi ikatan rangkap asam lemak tidak jenuh bebas maupun esternya.
- Langkah kerja
 - sampel + I₂ berlebih
 - kelebihan I₂ dititrasi dengan natrium tiosulfat.

$$I_2 + Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

Ada 2 macam metode yang biasa digunakan

A. Metode Hanus

- pereaksi: larutan I₂ dalam CH₃COOH glasial + Brom
- Langkah kerja
 - timbang sampel + kloroform + pereaksi Hanus, dibiarkan
 1 jam ditempat gelap
 - tambah larutan KI, kocok, titrasi dengan $Na_2S_2O_3$ dan tambah indikator pati
 - buat blanko dan bandingkan dengan sampel

B. Metode Wijjs

- pereaksi: kedalam larutan I₂ dilewatkan gas Cl₂
- Langkah kerja
 - timbang sampel + kloroform + pereaksi Wijjs, dibiarkan
 1 jam ditempat gelap
 - tambah larutan KI, kocok, titrasi dengan $Na_2S_2O_3$ dan tambah indikator pati
 - buat blanko dan bandingkan dengan sampel

Bilangan
$$I_2 = \frac{\text{(titer blanko - titer sampel)} \times N_{\text{Na}_2\text{S}_2\text{O}_3}}{\text{berat sampel (g)}} \times 126,9$$

2.3. Penggolongan Fraksi Lipid (Bil. enyabunan)

- Pengertian: jumlah mg KOH yang dibutuhkan untuk menyabunkan 1 g lemak.
- Prinsip: lemak dapat terhidrolisis oleh alkali menghasilkan sabun dari komponen asam lemaknya.
- Langkah kerja
 - timbang sampel + KOH beralkohol
 - refluks sampai larutan bebas dari butiran lemak
 - dinginkan + 1 mL indikator p_p dan titrasi dengan HCl

Bil. Penyabunan =
$$\frac{\text{(titer blanko - titer sampel)} \times N_{HCl}}{\text{berat sampel (g)}} \times 56,1$$

2.4. KCKT Senyawa Lipid

- Kendala:- pemilihan fasa diam dan fasa gerak sulit karena polaritas lemak sangat berbeda.
 - ekstrak lipid perlu disiapkan khusus.
- Detektor: spektrofotometri
 - indeks bias
 - fluorimetri

A. KCKT Asam Lemak

- Jenis kolom:- kolom normal
 - kolom fasaterbalik
- Contoh:
 - 1. Menggunakan kolom C-18 dan detektor indeks bias, asamasam lemak jenuh dan tak jenuh dapat dipisahkan sebagai metil ester.
 - 2. Asam-asam lemak dengan gugus OH dapat dideteksi pada 254 nm tanpa derivatisasi, tetapi agar rantai pendek dapat terpisahkan dilakukan derivatisasi dengan trifluoroasetilasi

A. KCKT Gliserida

- banyak dilakukan pemisahan trigliserida berdasarkan jumlah atom C
- ada hubungan linier antara log. Waktu retensi dengan jumlah atom C dan kejenuhan.

- setiap tambahan ikatan rangkap dua atom memperpendek waktu retensi .