SEBARAN DAN EKSTRAKSI UNSUR-UNSUR LOGAM

Sebaran Unsur

Hasil pengukuran geofisika menyatakan bahwa kerapatan bumi makin tinggi dari permukaan hingga bagian dalam. Sebaran material di dalam bumi disimpulkan melalui data penjalaran *gelombang seismik*. Secara umum model struktur bumi dinyatakan sebagai berikut :

- Inti dalam (padatan Fe dan Ni) dan inti luar (cairan Fe dan S) dengan kerapatan 11 x 10³ kg/m³ dan ketebalan 3470 km.
- Mantle (padatan magnesium silikat) berkerapatan 4,5 x 10³ kg/m³, dan ketebalan 2880 km.
- **Kerak** (crust) terdiri dari mineral silikat dan oksida dengan kerapatan 2,8 x 10³ kg/m³ dan ketebalan 17 km.
- Lautan sebagian besar terdiri dari H₂O dengan kerapatan 1,03 kg/m³ dan ketebalan 4 km.
- Atmosfer terdiri dari gas-gas yang sebagian besar mengandung N₂ dan O₂.

Studi seismik telah memberikan rujukan sifat-sifat mekanik, kerapatan, dan komposisi kimia dari inti bumi, mantel, dan kerak bumi. Mantel lebih banyak mengandung Mg daripada kerak bumi. Sementara kerak bumi lebih kaya mengandung unsur-unsur lain seperti Na, Al, K, dan Ca.

V.M. Goldschmidt mengklasifikasi unsur-unsur yang ada di bumi ke dalam 4 jenis, yaitu :

- Siderophile (iron-loving), tersebar sebagai logam kelompok besi (Fe, Co, Ni), sebagaimana tersebar pada inti bumi,
- Chalcophile, tersebar sebagai sulfida (gabungan non logam S, Se, dan As),
- Lithophile (rock-loving), tersebar sebagai silikat, dan
- Atmophile, tersebar sebagai penyusun atmosfer.

Tabel-1.1
Klasifikasi Unsur di Bumi
Menurut Goldschmidt

Siderophile	Chalcophile	Lithophile	Atmophile
Fe, Co, Ni,	Cu, Ag, (Au)	Li, Na, K,	H, N, (C),
Ru, Rh, Pd,	Zn, Cd, Hg,	Rb, Cs, Be,	(O), (F),
Re, Os, Ir,	Ga, In, TI,	Mg, Ca, Sr,	(CI), (Br),
Pt, Au, Mo,	(Ge), (Sn), Pb,	Ba, B, Al,	(I), gas mulia
Ge, Sn, C,	As, Sb, Bi,	Sc, Y, La,	
P, (Pb), (As),	S, Se, Te,	(C), Si, Ti,	
(W)	(Fe), (Mo),	Zr, Hf, Th,	
	(Re)	(P), V, Nb,	
		Ta, O, Cr,	
		W, U, (Fe),	
		Mn, F, Cl,	
		Br, I, (H),	
		(TI), Ga),	
		(Ge), (N)	

Pada pengklasifikasian di atas terdapat beberapa unsur yang memiliki lebih dari satu kelas. Misalnya besi sebagai unsur utama penyusun inti bumi, tetapi juga ditemukan sebagai mineral sulfida dan silikat. Namun secara umum unsur-unsur dalam satu kelas mempunyai kemiripan sifat kimianya. *Siderophile* adalah unsur-unsur yang mempunyai potensial elektrode rendah, lithophile unsur-unsur yang mempunyai potensial elektrode tinggi, dan chalcophile adalah unsur-unsur yang mempunyai potensial elektrode sedang.

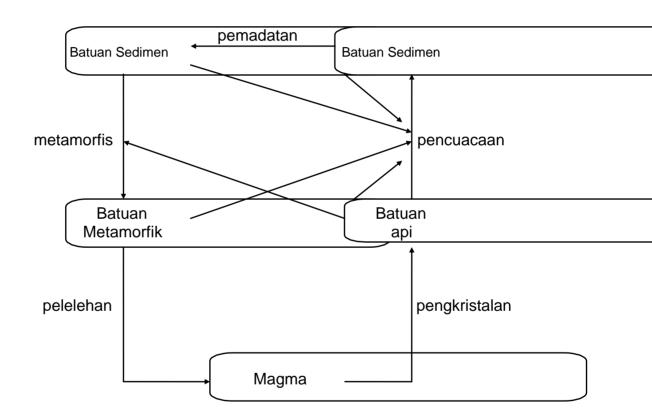
Kelimpahan unsur di kerak bumi telah ditentukan berdasarkan metode analitis dengan kemiripan apa yang ditemukan dalam meteorit. Data pada tabel-1.2 menunjukkan bahwa 8 unsur yaitu *oksigen, silikion, aluminium, besi, magnesium, kalsium, natrium, dan kalium* merupakan penyusun lebih dari 98,5% berat kerak bumi. Beberapa unsur lithophile seperti kalium, dan titanium kelimpahannya lebih banyak terpusatkan di kerak bumi.

Para ahli kimia dan metalurgi sangat tertarik perhatiannya terhadap sebaran unsur di kerak bumi, karena di sana merupakan sumber unsur-unsur yang dapat diekstraksi dan diisolasi. Batuan di kerak bumi terbentuk melalui berbagai cara sesuai dengan proses fraksionasi sebarannya.

1) **Batuan api** (igneous rock), terbentuk akibat pemadatan lelehan materi bertemperatur tinggi yang mengalir dari daerah bagian dalam bumi. Produk utama adalah *magma*, materi lain yang diakibatkan terhamburnya lelehan ke permukaan bumi disebut *lava* (kristal batuan volcanic).

Tabel-1.2 Komposisi Utama Penyusun Bumi dan Kerak Bumi

Unsur	Kelimpahan (ppm)				
	di bumi	di kerak bumi			
Н	-	1 400			
0	295 000	466 000			
Na	5 700	28 300			
Mg	127 000	20 900			
Al	10 900	81 300			
Si	152 000	177 200			
Р	1 000	1 050			
S	19 300	260			
K	700	25 900			
Ca	11 300	36 300			
Ti	500	4 400			
Cr	2 600	100			
Mn	2 200	950			
Fe	346 300	50 000			
Ni	23 900	75			


Tabel-1.3 Komposisi Batuan Api (Igneous)

Oksida	Persentase
SiO ₂	66,4
TiO ₂	10,7
Al_2O_3	14,9
Fe ₂ O ₃	1,5
FeO	3,0
MnO	0,08
MgO	2,2
CaO	3,8
Na₂O	3,6
K₂O	3,3
H ₂ O	0,6
P_2O_5	1,18

2) **Batuan metamorfik**, terbentuk akibat pengaruh panas dan tekanan terhadap batuan api (igneous) dan batuan sedimen. Karena pengaruh suhu dan tekanan, batu gamping (limestone) berubah menjadi marmer (marble), batupasir (sandstone) berubah menjadi kuarsa (quartzite), batu serpih (shale) berubah

menjadi *batu tulis* (slate) dan *mika*. Beberapa batuan metamofik ini mempunyai perbedaan pada struktur orientasi bidang dan garis yang disebabkan pengarahan tekanan selama proses metamorfis.

3) **Batuan sedimen**, terbentuk karena pengaruh udara, air, proses biologis, dan proses kimia seperti *hidrolisis, pengendapan, oksidasi, dan reduksi*. Misalnya batupasir (sandstone) terbentuk dari pasir (sand), batukapur (limestone) terbentuk dari kapur (lime), batu serpih (shale) terbentuk dari lumpur (mud).

Siklus Batuan

Tabel-1.4
Komposisi Persentase Rata-rata
Batuan Sedimen

Oksida	Batuan pasir	Batu kapur	Batuan Karbonat
SiO ₂	70,0	6,9	8,2
TiO ₂	0,58	0,05	-
Al_2O_3	8,2	1,7	2,2
Fe ₂ O ₃	2,5	0,98	1,0
FeO	1.5	1,3	0,68
MnO	0,06	0,08	0,07
MgO	1,9	0,97	7,7
CaO	4,3	47,6	40,5
Na₂O	0,58	0,08	-
K₂O	2,1	0,57	-
H ₂ O	3,0	0,84	-
P_2O_5	0,10	0,16	0,07
CO ₂	3,9	38,3	35,5
SO₃	0,7	0,02	3,1

Kalsium karbonat yang terkandung di dalam batuan sedimen jumlahnya paling cukup banyak . Senyawa ini dengan air alam dan karbon dioksida yang larut (asam karbonat) membentuk sistem kesetimbangan sebagai berikut :

$$CaCO_3 + H_2CO_3 \longrightarrow Ca^{2+} + 2 HCO_3^{-}$$

Kandungan air, karbon dioksida, klorin, feri yang berubah menjadi fero di dalam batuan sedimen jumlahnya lebih banyak daripada yang terkandung di dalam batuan api. Penurunan kandungan natrium mencerminkan bahwa ion-ion natrium melarut kemudian masuk ke dalam lautan melalui proses pencuacaan (weathering).

Senyawa fero teroksidasi menjadi feri cukup lama melalui oksigen atmosfer. Senyawa yang terbentuk adalah Fe_2O_3 atau dalam bentuk hidratnya. Feri oksida umumnya tidak berubah karena kelarutannya sangat kecil. Pada kondisi tertentu feri oksida tersuspensi sebagai sol. Koloid bermuatan positif tersebut mampu menyerap anion seperti fosfat.

Mangan, pada awalnya berada sebagai mangan (II), larut sedikit dalam asam karbonat. Pada kondisi tertentu dapat teroksidasi menjadi mangan (III) dan (IV). Oksida campuran seperti Mn₃O₄ dapat terbentuk juga, tetapi sebagai produk akhir adalah MnO₂. Mangan oksida dapat membentuk sol bermuatan negatif, dan kation-kation yang diikatnya adalah K⁺, Ni²⁺, Co²⁺, Pb²⁺, Ba²⁺, dan Cu²⁺. Selama proses sedimentasi, mangan terpisahkan secara efektif dari unsur-unsur lain seperti besi. Proses ini terjadi karena adanya perbedaan kelarutan pada penambahan pH, di mana ferioksida mengendap terlebih dahulu sebelum oksida mangan.

Belerang adalah unsur lainnya yang teroksidasi selama proses pencuacaan. Di dalam batuan api, unsur ini berada sebagai sulfida (tingkat oksidasi -2), dan bila kontak dengan udara dan air berubah membentuk sulfat. Logam-logam sulfida terbentuk sebagai mineral sedimen hanya apabila berada dalam lingkungan yang sangat mereduksi, seperti adanya zat-zat organik.

Proses pencuacaan memberi peran terhadap penyebaran unsur-unsur ke dalam air laut. Air laut merupakan sistem buffer dengan pH antara 8,0 dan 8,4. Rentang ini memberi gambaran bahwa dalam air laut terdapat banyak ion kalsium berasal dari aliran sungai yang diendapkan sebagai kalsium karbonat. Karena itu komposisi air laut ditentukan oleh garam-gram yang tertinggal akibat penguapan. Kebanyakan garam yang berada di air laut terdiri dari *kalsium sulfat* dan *natrium klorida*.

Unsur-unsur lain sirkulasinya tetap di dalam kerak bumi. Kalsium dan magnesium masuk ke dalam proses biologis, kalsium membentuk tulang, sedangkan magnesium membentuk klorofil. Kalium dan natirum mempunyai peran sangat penting di dalam biologis. Sedangkan siklus materi penting terjadi di alam adalah adalah siklus karbon, siklus fosfor, dan siklus nitrogen.

Tabel-1.5 Komposisi Air laut (untuk salinitas 35 ppt)

Komponen	Konsentrasi (ppm)
Cl	18 900
Na⁺	10 556
SO ₄ ²⁻	2 649
Mg ²⁺ Ca ²⁺	1 272
Ca ²⁺	400
K ⁺	380
HCO ₃ -	140
Br ⁻	65
Sr ²⁺	8
H ₃ BO ₃	26

Aturan Goldschmidt

Silikat adalah senyawa yang jumlahnya mendominasi senyawa lain di kerak bumi. Sifat dan strukturnya mempunyai kapasitas untuk berubah menjadi isomorf lain. Kecenderungan sebaran unsur di bumi, telah diformulasikan oleh aturan-aturan empiris yang ditelaah V.M. Goldschmidt. Menurutnya faktor utama yang berpengaruh terhadap sebaran ion-ion di bumi adalah *ukuran* dan *muatan*.

Aturan Goldschmidt

- Jika dua ion mempunyai jari-jari sama atau hampir sama dan muatan sama, maka ion-ion tersebut akan terdistribusi dalam mineral yang berbanding lurus dengan kelimpahannya disertai pergantian isomorf dari satu ion dengan ion yang lain.
- 2) Jika dua ion mempunyai jari-jari hampir sama dan muatan sama, ion berukuran lebih kecil akan mengkristal lebih awal.
- 3) Jika dua ion mempunyai jari-jari hampir sama tetapi muatan berbeda, maka ion dengan muatan lebih tinggi akan mengkristal lebih awal.

Sebagai gambaran ditemukan bahwa ion Ba^{2+} (135 pm) dan K^+ (133 pm) terjadi pergantian secara intensif di dalam pembentukan mineralnya. Demikian pula ion Fe^{3+} (64 pm) dan Cr^{3+} (69 pm), dapat membentuk pasangan dengan ion lain dengan menunjukkan substitusi isomorf.

Gambaran lain ditunjukkan bahwa ion ${\rm Mg^{2^+}}$ (65 pm) akan mengkristal lebih awal membentuk sederetan isomorf olivin (${\rm Mg_2SO_4}$) dibandingkan dengan ion ${\rm Fe^{3^+}}$ (82 pm). Sementara ${\rm Li^+}$ (60 pm) dan ${\rm Mg^{2^+}}$ (65 pm) akan terjadi substitusi, akan tetapi litium ditemukan mengkristal lebih lambat dalam mineralnya.

Aturan Goldschmidt hanya dapat digunakan sebagai pemandu secara kualitatif terhadap sebaran unsur. Misalnya Zn²⁺ (74 pm) diharapkan berada dalam feromagnesium silikat sebagaimana terdapatnya Ni²⁺ (76 pm) dan Co²⁺ (78 pm). Kenyataannya Zn²⁺ tidak ditemukan dalam silikat melainkan berbentuk struktur kristal bilangan koordinasi-6 (oktahendral) tetapi berada sebagai bilangan koordinasi-4 (tetrahendral). Dalam kasus ini kita katakan bahwa walaupun jari-jari ion dapat digunakan sebagai alat merasionalisasi terbentuknya struktur kristal, ternyata struktur tersebut akan berubah juga karena faktor lingkungan.

Keterbatasan aturan Goldschmidt lainnya adalah tidak memperhitungkan jenis-jenis ikatan yang terbentuk. Demikian Cu⁺ (96 pm) tidak terdapat bersamaan dengan Na⁺ (95 pm) walaupun ukurannya hampir sama, hal ini disebabkan ikatan Cu⁺ sedikit sekali menunjukkan karakter ionik dibandingkan Na⁺. Sehubungan dengan kasus ini, maka **Ringwood** memperluas kesahihan aturan Goldschmidt dengan mengusulkan pentingnya *keelektronegatifan ion*. Kriterianya menyatakan bahwa "*untuk dua ion yang memiliki valensi dan jari-jari hampir sama, ion yang keelektronegatifannya lebih rendah*

akan membentuk kristal lebih awal karena membentuk ikatan yang lebih kuat (lebih ionik) daripada ion lainnya".

Kritik lainnya yang diajukan terhadap aturan Goldschmidt adalah didasarkan atas pandangan termodinamika. Kritik ini menyatakan bahwa aturan Goldschmidt hendaknya memasukan entalpi kisi kristal secara implisit. Namun kesulitannya adalah tidak cukupnya informasi besaran termodinamika yang dimiliki, seperti halnya energi solvasi atau perubahan energi bebas yang berhubungan dengan reaksi yang berlangsung pada media lelehan, begitu pula kita tidak dapat mempertimbangkan kestabilan relatif ion di dalam lelehan atau fase kristal.

Disisi lain **Hulme** mengusulkan pengklasifikasian sumber-sumber logam di alam ke dalam 5 kelompok, yaitu :

Logam tipe-1:

- Unsur-unsur ns¹ dan Be.
- Logam sangat elektropositif, ditemukan sebagai garam *klorida, karbonat, dan sulfat* yang larut.
- Diekstraksi melalui teknik elektrolitik.

Logam tipe-2:

- Unsur-unsur ns² kecuali Be.
- Logam alkali tanah elektropositif, ditemukan sebagai *karbonat* dan *sulfat* tidak larut (kecuali MgSO₄ . 7H2O dapat larut).
- Diekstraksi melalui elektrolisis.

Logam tipe-3:

- Terdiri dari unsur ns² np¹, d¹, d², d³, Cr dan Mn.
- Tidak mempunyai orbital d terisi penuh yang dapat digunakan untuk membentuk ikatan π .
- Sebagai sumber utama oksida dan campuran oksida.
- Diekstraksi melalui elektrolisis, reduksi kimia dengan C, CO, atau logam lebih reaktif.

Logam tipe-4:

- Mempunyai orbital d terisi penuh yang dapat digunakan untuk membentuk ikatan d- $p-\pi$ dengan atom belerang, seperti Mo, Fe, Co, Ni, Cu, Ag, dan logam blok p.
- Sebagai sumber utama *sulfida*, dan sedikit dalam oksida.
- Diekstraksi dengan cara mengubah sulfida menjadi oksida, kemudian direduksi dengan C, CO, dan hidrogen atau sulfat untuk proses elektrolitik.

Logam tipe-5:

- Logam tidak reaktif, berada sebagai unsur bebas.
- Potensial oksidasinya rendah.
- Oksida dan sulfidanya tidak stabil.
- Senyawanya mudah direduksi.
- Garis batas dengan tipe-4 tidak ditafsirkan secara kaku, seperti Cu, Zn, dan Pb terdapat juga sebagai karbonat, akan tetapi sumber karbonat yang dapat dikerjakan hanyalah oksida dan karbonat Fe. Hg berada sebagai unsur bebas pula, Bentuk sulfidanya dengan mudah direduksi melalui penguraian termal.

Tabel 1.6 Klasifikasi Sumber Logam

Li	Ве	В													
Na	Mg	ΑI	Si												_
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te
Cs	Ba	La	Hf							Au `				Bi	Po
Fr	Ra	Ac	Th	Pa	U			5							
1	2		3									4			

Ekstraksi

Metalurgi adalah pengetahuan yang mengkaji tentang cara-cara pengolahan logam dari bijihnya hingga memperoleh logam yang siap untuk digunakan. Proses metalurgi dibagi menjadi 3 prinsip pengerjaan: (1) Perlakuan awal, dengan cara melakukan pemekatan bijih (concentration of ore) agar bijih yang diinginkan terpisah dari materi pengotor (gangue). (2) Proses reduksi, yaitu mereduksi senyawa logam yang ada pada bijih agar berubah menjadi logam bebas. (3) Pemurnian (refining), yaitu melakukan pengolahan logam kotor melalui proses kimia agar diperoleh tingkat kemurnian tinggi.

Pemekatan Bijih

Pemekatan bijih bertujuan ialah untuk memisahkan mineral dari pengotornya sehingga diperoleh kadar bijih tinggi. Pemekatan dapat dilakukan melalui dua teknik pemisahan, yaitu pemisahan secara fisis dan pemisahan secara kimia.

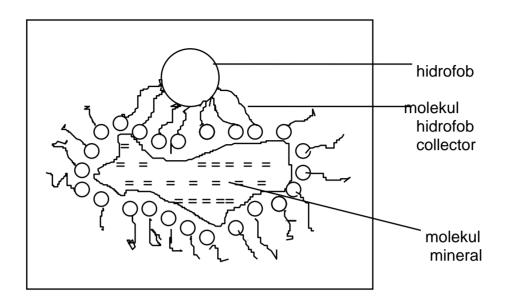
Pemisahan secara fisis terdiri dari :

- Pemisahan pengapungan (flotation separation),
- Pemisahan gaya berat (gravity separation),
- Pemisahan magtetik (magnetic separation),
- Pemisahan pencairan (liquation separation), dan
- Pemisahan amalgam (amalgams separation).

Pemisahan secara kimia terdiri dari :

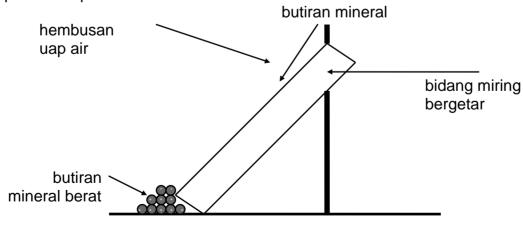
- Proses pelindian (leaching),
- Proses pemanggangan (roasting),

Pengapungan buih (froth flotation) adalah proses pemisahan mineral menjadi bijih dari pengotor dengan cara mengapungkan bijih ke permukaan melalui pengikatan dengan buih. Prosess ini banyak dipakai untuk beberapa bijih seperti Cu, Pb, Zn, Ag, Au, dan Ni. Teknik pengerjaannya dilakukan dengan cara menghembuskan udara ke dalam butiran mineral halus (telah mengalami proses crushing) yang dicampur dengan air dan zat pembuih. Butiran mineral halus akan terbawa gelembung udara ke permukaan, sehingga terpisahkan dengan materi pengotor (gangue) yang tinggal dalam air (tertinggal pada bagian bawah tank penampung). Pengikatan butiran bijih akan semakin efektif apabila ditambahkan suatu zat collector.

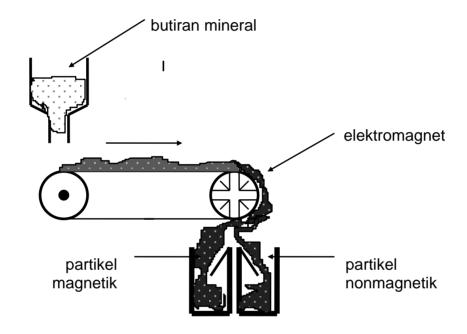

Prinsip dasar pengikatan butiran bijih oleh gelembung udara berbuih melalui molekul collector adalah :

- Butiran zat yang mempunyai permukaan hidrofilik akan terikat air sehingga akan tinggal pada dasar tank penampung.
- Butiran zat yang mempunyai permukaan non-polar atau hidrofob akan ditolak air , jika ukuran butirannya tidak besar, maka akan naik ke permukaan dan terikat gelembung udara.

Kebanyakan mineral terdiri dari ion yang mempunyai permukaan hidrofil, sehinga partikel tersebut dapat diikat air. Dengan penambahan zat **collector**, permukaan mineral yang terikat molekul air akan terlepas dan akan berubah menjadi hidrofob. Dengan demikian ujung molekul hidrofob dari collector akan terikat molekul hidrofob dari gelembung, sehingga mineral (bijih) dapat diapungkan. Molekul collector mempunyai struktur yang mirip dengan detergen. Salah satu macam zat collector yang sering dipakai untuk pemisahan mineral silfida adalah Xanthate.


Struktur Xanthate :
$$R - O - C$$
 Struktur sulfonat : $R - S = O$

gelembung udara


Molekul mineral yang dilapisi molekul collector menjadi terikat gelembung udara

Pemisahan gaya berat (gravity separation), adalah proses pemisahan mineral yang didasarkan atas perbedaan massa jenis antara partikel bijih dan partikel pengotor. Teknik pengejaannya adalah dengan cara menghamburkan butiran mineral pada bidang miring yang dihembusi uap air, sehingga partikel mineral yang lebih berat akan terkumpul pada bagian bawah tempat penampungan. Metode ini sering dipakai pada pemisahan cassiterit (SnO₂) dari pengotor (gangue), pemisahan emas atau perak dari pasir.

1

Pemisahan magnetik (magnetic separation), adalah proses pemisahan dengan dasar apabila mineral memiliki sifat feromagnetik. Teknik pengejerjaannya adalah dengan mengalirkan serbuk mineral secara vertikal terhadap medan magnet yang bergerak secara horizontal. Dengan demikian materi yang tidak tertarik magnet akan terpisahkan dari materi yang memiliki sifat feromagnet. Metode ini sering dilakukan untuk memisahkan mineral magnetit (Fe₃O₄) dari pengotor, kromit Fe(CrO₂)₂ dari silikat, rutil (TiO₂) dari apatit CaF₂. 3Ca₃(PO₄)₂, wolframit FeWO₄ dari cassiterit SnO₂, Zirkon ZrSiO₄, pirolisit MnO₂ dari pengotor.

Pemisahan Magnetik Bijih dan Pengotor

Pemisahan pencairan (liquation separation), adalah proses pemisahan yang dilakukan dengan cara memanaskan mineral di atas titik leleh logam, sehingga cairan logam akan terpisahkan dari pengotor. Cara ini biasa dilakukan untuk memperoleh bismut atau tembaga.

Pemisahan amalgam (amalgams separation), adalah proses pemisahan didasarkan atas kelarutan logam dari mineral dalam raksa. Logam yang pemisahannya dilakukan dengan cara ini adalah Ag dan Au. Untuk melepaskan logam Ag atau Au dari amalgam dilakukan dengan proses detilasi.

Proses pelindian (leaching) adalah proses pemekatan kimiawi untuk melepaskan pengotor bijih dari suatu mineral dengan cara pelarutan dalam reagen tertentu. Misalnya H₂SO₄ digunakan untuk melindi oksida Zn dan Ni. Natrium hidroksida digunakan untuk melindi aluminium oksida dari bijih bauksit. Materi tidak larut sebagai pengotor dipisahkan dengan cara penyaringan (filtration), sedangkan larutan ion logam dipadatkan melalui cara pengkristalan seperti pada ekstraksi Al, atau dengan pengendapan (menambahkan ion tertentu agar membentuk senyawa tidak larut. Bahkan logam tertentu seperti emas dapat diperoleh secara langsung melalui reduksi larutan hasil lindiannya, sedangkan untuk memperoleh Zn dilakukan dengan mengelektrolisis larutan lindiannya.

Pelindian Aluminium Oksida (alumina)

Bauksit mengandung Al₂O₃. 3H₂O, besi (III) oksida Fe₂O₃, silika SiO₂, dan tanah liat

(clay). Serbuk bauksit dilindi dengan NaOH pada suhu 150-170 °C dan tekanan 5-10 atm sehingga terjadi reaksi :

$$Al_2O_3 \cdot 3H_2O(s) + 2OH(aq) \rightarrow 2Al(OH)_4(aq)$$

Silikat dan tanah liat mengendap sebagai natrium aluminium silikat. Demikian pula besi (III) oksida tidak larut dan membentuk lumpur merah (red mud) di bagian bawah wadah tempat mereaksikan. Semua endapan dipisahkan melalui penyaringan. Dengan pendinginan, larutan aluminat akan mengendap sebagai aluminium oksida hidrat.

$$2 \text{ Al}(OH)_4(aq) \rightarrow \text{Al}_2O_3 \cdot 3H_2O(s) + 2 OH(aq)$$

Setelah dilakukan pencucian, dan penyaringan. Alumina hidrat dipanaskan sampai 1200 °C, maka dihasilkanlah laumina dengan kemurnian 99,5%.

$$Al_2O_3 \cdot 3H_2O(s) \rightarrow Al_2O_3(s) + 3H_2O(q)$$

Untuk memperoleh Al dilakukan dengan elektrolisis dalam kriolit.

Pelindian emas :

Emas dilindi dengan larutan NaCN yang dialiri oksigen,

4 Au (s) + 8 CN⁻(aq) + O₂ (g) + H₂O(l)
$$\rightarrow$$
 4 Au(CN)₄²⁻⁻(aq) + 4 OH⁻ (aq)

pengotor dipisahkan melalui penyaringan, dan seng ditambahkan untuk mendesak emas dari larutan.

$$Au(CN)_4^{2-}(aq) + Zn(s) \rightarrow Zn(CN)_4^{2-}(aq) + 2 Au(s)$$

• Pelindian seng oksida:

Seng oksida sebagai hasil pemanggangan seng sulfida dilindi dengan asam sulfat encer.

$$ZnO(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_2O(l)$$

Untuk menghilangkan logam-logam pengotor seperti Ag dan Cd, ke dalam larutan perlu ditambahkan serbuk seng.

$$Zn(s) + Cd^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cd(s)$$

 $Zn(s) + 2 Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2 Ag(s)$

Untuk mendapatkan Zn dilakukan dengan elektrolisis.

Proses pemanggangan (roasting), adalah proses pemekatan bijih melalui pemanasan bijih yang disertai pengontrolan jumlah udara (oksigen).

Misalnya:

• Pengubahan bijih sulfida menjadi oksida :

$$2 \operatorname{ZnS}(s) + 3 \operatorname{O}_2(g) \rightarrow \operatorname{ZnO}(s) + 2 \operatorname{SO}_2(g)$$

melalui tahap ini pengotor As dapat dihilangkan.

• Pengubahan bijih sulfida secara parsial menjadi oksida :

2 PbS(s)
$$+ 3 O_2(g) \rightarrow 2 PbO(s) + 2 SO_2(g)$$
 galena

$$PbS(s) \ + PbO(s) \ \rightarrow \ 3 \ Pb(s) \ + \ SO_2(g)$$

Pengubahan sulfida menjadi sulfida yang lebih meningkat kadarnya:
 Semula dalam bijih CuFeS₂ terdapat kadar Cu sebanyak 0,5 - 5%, setelah dilakukan pemanggangan maka kadar Cu dalam Cu₂S meningkat menjadi 25-30%.

$$2 \text{ CuFeS}_2(s) + 4 O_2(g) \rightarrow \text{Cu}_2S(s) + 3 SO_2(g) + 2 FeO(s)$$

Proses Reduksi

Ada dua jenis reduksi senyawa logam, yaitu reduksi kimia dan reduksi elektrolitik. Kita ketahui bahwa kereaktifan logam menentukan sekali di dalam memilih metode yang akan digunakan. Senyawa-senyawa dari logam dengan kereaktifan rendah kebanyakan mudah direduksi. Sebaliknya senyawa-senyawa dari logam sangat reaktif sukar direduksi.

Reduksi kimia senyawa logam

Ketika sulfida-sulfida dari beberapa logam kurang reaktif dipanaskan, terjadilah proses reduksi. Ion sulfida akan diubah menjadi belerang dioksida. Misalnya

$$Cu_2S(s) + O_2(g) \rightarrow 2 Cu(l) + SO_2(g)$$

Ektraksi logam pada zaman dahulu dimulai dengan menggunakan bara arang sebagai reduktornya. Karbon dan karbon monoksida (CO), mempunyai kemampuan mereduksi beberapa oksida logam menjadi logam.

Misalnva

$$2 \text{ CuO}(s) + \text{C}(s) \rightarrow 2 \text{ Cu(I)} + \text{CO}_2(g)$$

$$CuO(s)$$
 + $CO(g)$ \rightarrow 2 $Cu(l)$ + $CO_2(g)$

Gas netral seperti metana (CH₄), dapat juga digunakan untuk mereduksi tembaga (II) oksida panas menjadi logam tembaga.

$$4 \; CuO(s) \;\; + CH_4(g) \rightarrow \;\; 4 \; Cu(l) \;\; + \;\; 2 \; H_2O(g) \quad + \;\; CO_2(g)$$

Namun perlu diingat tidak semua senyawa logam dapat direduksi oleh C atau CH₄.

Reduksi elektrolitik senyawa logam

Logam-logam dapat diperoleh sebagai produk katode selama proses elektrolisis lelehan senyawa ionik. Misalnya, produksi Na dalam cell Down elektrolitnya adalah menggunakan campuran lelehan narium klorida dan kalsium klorida.

$$Na^+ + e^- \rightarrow Na(I)$$
 (lelehan garam)

Energi yang diperlukan suatu produksi untuk mendapatkan lelehan elektrolit memakan biaya besar. Karena itu allternatif elektrolit yang digunakan adalah berupa larutannya. Misalnya tembaga adalah merupakan produk katode di dalam larutan CuSO₄.

Deret kereaktifan logam memberikan dasar dalam melakukan pereduksian senyawa logam. Reduksi kimia umumnya cocok untuk logam-logam berkereaktifan rendah, sedangkan metode elektrolitik dapat digunakan untuk logam-logam pada umumnya. Dimana pemilihan reduksi kimia atau reduksi elektrolitik, pertimbangan ekonomis memberikan keputusan dalam memilih metode tersebut.

Praktek yang dilakukan di dalam industri menyimpulkan :

Sulfida-sulfida logam yang dalam deret kereaktifannya rendah dapat direduksi dengan pemanasan kuat dalam udara. Misalnya tembaga(I) sulfida Cu₂S, nikel(II) sulfida, NiS, dan raksa(II) sulfida HgS. Ion-ion sulfda adalah reduktor, sehingga dioksidasi menjadi belerang dioksida. Pada contoh berikut, ion tembaga (I) dan oksigen direduksi.

$$Cu_2S(s) + O_2(g) \rightarrow 2Cu(l) + SO_2(g)$$

Reaksi yang terjadi ini disebut pemanggangan (roasting) sekaligus peleburan (smelting). Oksida-oksida logam yang memiliki posisi rendah sampai menengah pada deret kereaktifan logam dapat direduksi dengan menggunakan kokas pada tanur. Oksida Fe, Pb, dan Sn direduksi dengan cara ini. Ion seng, tembaga, dan nikel direduksi secara elektrolitik pada katode dari larutan garamnya. **Peleburan** (smelting) dimaksudkan adalah proses reduksi bijih pada suhu tinggi hingga mendapatkan material lelehan. Produk reduksi selama proses pelelehan disebut **matte**. Matte umumnya berupa campuran sulfida, atau logam dan sulfida, dimana persentase logamnya meningkat sebagai hasil pelelehan. Cotoh lainnya adalah:

$$Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(I) + 3CO_2(g)$$

Sebagai pengotor (gangue) pada bijih besi ini adalah silikat SiO₂, dan untuk menghilangkannya diberikan zat penambah (flux) yaitu CaO(s).

$$SiO_2(s) + CaO(s) \rightarrow CaSiO_3(l)$$

lon-ion kebanyakan logam reaktif seperti Na, K, Ca, Mg dan Al, harus direduksi secara elektrolitik dari lelehan senyawa atau campuran senyawanya. Ion-ion ini tidak dapat dielektrolisis dari larutannya karena air yang akan mengalami reduksi pada katode.

Tabel-1.7 Ekstraksi Logam

Proses Elektrode	Potensial reduksi standar (volt)	Sumber utama	Metode ekstraksi utama	Reaksi pada ekstraksi
Li ⁺ /Li	- 3,04	Spodumen LiAl(SiO ₃) ₂	Elektrolisis lelehan LiCl + KCl	1
K ⁺ /K	- 2,92	Carnallite KCI.MgCl ₂ .6H ₂ O	Elektrolisis lelehan KCI + CaCl ₂	
Ba ²⁺ /Ba	- 2,90	Witherite BaCO ₃ Barytes BaSO ₄	Elektrolisis lelehan BaCl ₂	
Sr ²⁺ /Sr	- 2,89	Strontianite SrCO ₃ Celestine SrSO ₄	Elektrolisis lelehan SrCl ₂	Reduksi elektrolitik
Ca ²⁺ /Ca	- 2,87	Limestone CaCO ₃ Gypsum CaSO ₄	Elektrolisis lelehan CaCl ₂ dan CaF ₂	
Na ⁺ /Na	- 2,71	Rock salt NaCl Chile salpetre NaNO ₃	Elektrolisis lelehan NaCl + CaCl ₂	$M^{n+} + ne \rightarrow M$
Mg ²⁺ /Mg	- 2,37	Carnallite KCI.MgCl ₂ .6H ₂ O Magnesite MgCO ₃	Elektrolisis lelehan MgCl ₂ + KCl	
Be ²⁺ /Be	- 1,70	Beryl 3BeO.Al ₂ O ₃ .6SiO ₂	Elektrolisis lelehan BeF ₂ + NaF	
Al ³⁺ /Al	- 1,66	Bauxite Al ₂ O ₃ .2H ₂ O Silicate rocks	Elektrolisis Al ₂ O ₃ dalam lelehan Na ₃ AlF ₆	\
Mn ²⁺ /Mn	- 1,18	Pyrolusite MnO ₂ Hausmannite Mn ₃ O ₄	Reduksi oksida dengan Al atau C	$3Mn_3O_4 + 8AI \rightarrow 9Mn + 4AI_2O_3$
Ti⁴⁺/Ti	- 0,95	Ilmenite TiO ₂ .FeO Rutile TiO ₂	Reduksi TiCl ₄ dengan Mg atau Na	$TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$
Zn ²⁺ /Zn	- 0,76	Zinc blende ZnS Calamine ZnCO ₃	Reduksi ZnO dengan C atau elektrolisis ZnSO ₄	$ZnO + C \rightarrow Zn + CO$
Cr ³⁺ /Cr	- 0,74	Chromite Fe).Cr ₂ O ₃	Reduksi Cr ₂ O ₃ dengan Al	$Cr_2O_3 + 2AI \rightarrow 2Cr + Al_2O_3$
Fe ²⁺ /Fe	- 0,44	Magnetite Fe ₃ O ₄ Haematite Fe ₂ O ₃	Reduksi oksida dengan CO	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
Co ²⁺ /Co	- 0,28	Smaltite CoAs ₂	Reduksi Co₃O₄ dengan Al	$3\text{CoO}_4 + 8\text{Al} \rightarrow 9\text{Co} + 4\text{Al}_2\text{O}_3$
Ni ²⁺ /Ni	- 0,25	Millerite NiS	Reduksi NiO dengan CO	$NiO + 5CO \rightarrow Ni(CO)_4 + CO_2$ $Ni(CO)_4 \rightarrow Ni + 4CO$
Sn ²⁺ /Sn	- 0,14	Cassiterite SnO ₂	Reduksi SnO ₂ dengan C	$SnO_2 + 2C \rightarrow Sn + 2CO$
Pb ²⁺ /Pb	- 0,13	Galena PbS	Reduksi PbO dengan C	$PbO + C \rightarrow Pb + CO$
Bi ³⁺ /Bi	+ 0,32	Bismuth glance Bi ₂ S ₃ Bismuthite Bi ₂ O ₃	Reduksi Bi₂O₃ dengan C	$Bi_2O_3 + 3C \rightarrow 2Bi + 3CO$
Cu ²⁺ /Cu	+ 0,34	Copper pyrites CuFeS ₂ Cuprite Cu ₂ O	Oksidasi parsial bijih sulfida	$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
Ag ⁺ /Ag	+ 0,80	Argentite Ag₂S Sebagai logam	Metode khusus dengan NaCN	$Ag_2S + 4NaCN \rightarrow 2NaAg(CN)_2 + Na_2S$ $2NaAg(CN)_2 + Zn \rightarrow 2Ag + Na_2Zn(CN)_4$
Hg ²⁺ /Hg	+ 0,85	Cinnabar HgS	Reduksi langsung HgS dengan panas	$HgS + O_2 \rightarrow Hg + SO_2$
Pt ²⁺ /Pt	+ 1,20	Sebagai logam Sperllite PtAs ₂	Penguraian termal (NH ₄) ₂ PtCl ₆	$(NH_4)_2PtCl_6 \rightarrow Pt + 2 NH_4Cl + 2Cl_2$
Au ³⁺ /Au	+ 1,50	Sebagai logam	Metode khusus dengan NaCN	Sama seperti perak 2NaAu(CN)₂ + Zn → 2Au + Na₂Zn(CN)₄

Energi yang diperlukan untuk mengekstraksi logam dari senyawanya tertera pada tabel berikut. Energi ini sangat penting untuk mebuat keputusan bagaimana suatu logam paling baik diproduksi dari bijihnya.

Tabel 1.8 Energi Ekstraksi Logam


Senyawa	Logam	Energi Minium (kJ) untuk menghasilkan		
		1 mol logam	1 kg logam	
Oksida Ag ₂ O	Ag	15,5	144	
CuO	Cu	157	2 470	
Fe ₂ O ₃	Fe	412	7 370	
Al_2O_3	Al	830	31 100	
MgO	Mg	601	24 700	
Sulfida Ag₂S	Ag	16,5	153	
Cu ₂ S	Cu	40	679	
Fe ₂ S ₃	Fe	178	3 180	
Al ₂ S ₃	Al	362	13 400	
MgS	Mg	346	14 800	

Potensial elektrode standar yang telah dikemukakan memberikan pandauan yang sangat baik dalam melakukan ekstraksi logam dari senyawanya. Akan tetapi banyak logam-logam untuk kepentingan industri diekstraksi melalui reduksi oksida-oksidanya. Dalam hal ini reduksi oksida oleh C memegang peranan penting. Makin tinggi suhu dari suatu proses industri, makin mahal proses tersebut dilaksanakan. Oleh karena itu pengetahuan tentang pengaruh suhu pada suatu reaksi perlu diperhatikan.

Pada suhu tinggi laju reaksi akan makin tinggi pula dan reaksi harus dikontrol secara termodinamika, karena itu pengetahuan perubahan energi bebas reaksi ΔG° akan memberikan petunjuk apa yang akan terjadi. Diagram yang menunjukkan hubungan antara ΔG° dengan suhu disebut diagram **Ellingham.** Perhatikan garis $\Delta G^\circ/T$ untuk reaksi 2Zn(s) + O2(g) \rightarrow 2ZnO(s). Pada 0 °C harga ΔG° reaksi ini adalah - 640 kJ, dan reaksi diantara seng dan oksigen pada suhu ini sangat eksotermis tetapi lambat. Dengan menaikkan suhu pada 1000 °C harga ΔG° meningkat sampai - 400 kJ. Pada 1900 °C harga ΔG° menjadi positif, dan pada suhu ini seng oksida spontan mengurai menjadi unsur-unsur penyusunnya. Sifat ini mirip untuk seluruh unsur (kecuali C) yaitu pada suhu tinggi oksidanya menjadi relatif tidak stabil untuk menjadi unsur-unsur penyusunnya.

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \quad dan$$

Kemiringan garis dapat dijelaskan oleh perubahan entropi selama reaksi. Laju perubahan ΔG^0 dengan suhu (tekanan tetap) adalah sama dengan perubahan entropi standar untuk reaksi dengan tanda negatif (disebut koefisien suhu perubahan energi bebas). Dengan kata lain sebagian besar proses kimia ΔH^0 dan ΔS^0 tidak berubah terhadap suhu. Untuk beberapa tujuan jika ΔG^0 diplot terhadap T akan memberikan garis lurus dengan tetapan kemiringan ΔS^0 (negatif). Dengan mengetahui perubahan entropi standar ΔS^0 untuk reaksi maka dapat diprediksi bagaimana ketergantungan perubahan energi bebas terhadap suhu. Secara umum dinyatakan bahwa entropi standar akan meningkat dalam urutan **padatan < cairan < gas**.

Diagram Ellingham

Perubahan entropi standar untuk suatu reaksi dinyatakan dengan: $\Delta S^0 = \Sigma \Delta S^0$ (hasil) - $\Sigma \Delta S^0$ (reaktan). Misalnya uantuk reaksi pembentukan ZnO

$$2Zn(s) + O_2(g) \rightarrow 2ZnO(s)$$

maka perubahan entropi standarnya adalah -200,4 JK (kuantitas negatif besar). Hal ini menggambarkan bahwa selama reaksi berlangsung 1 mol oksigen dengan

keacakan tinggi diubah menjadi zat padat dengan keteraturan tinggi . Dengan kata lain pertambahan keteraturan mencerminkan makin besar harga negarif ΔS^0 reaksi. Oleh karena itu

$$\begin{array}{c} \Delta G^0 \\ T \end{array} = -\Delta S^0$$

menjadi +200,4 JK $^{-}$. Kemiringan garis $\Delta G^{\circ}/T$ reaksi adalah positif yaitu mengarah dari kiri ke kanan.

Oksidasi karbon menjadi karbon dioksida berikut ini merupakan contoh reaksi yang menunjukkan perubahan entropi standar sangat kecil.

$$C(s)$$
 + $O_2(g)$ $\rightarrow CO_2(g)$ S^o 5,7 205 214 besar besar

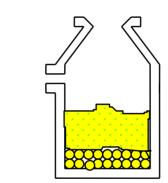
Harga ∆S⁰ adalah +3,3 JK⁻.

Contoh reaksi lain yang menghasilkan ΔS^0 besar adalah pada pembentukan CO(g) seperti berikut.

$$2C(s) + O_2(g) \rightarrow 2CO(g)$$
 S^o 2 x 5,7 205 2 x 198 kecil besar besar

Harga ∆S⁰ adalah +179,6 JK⁻.

Diagram Ellingham seperti ditunjukkan sebelumnya demikian penting karena dapat memberikan gambaran tentang perubahan energi bebas suatu reaksi pada berbagai perubahan suhu. Contohnya apabila kita akan mereduksi ZnO(s) dengan C(s) pada suhu 25 °C (298 K):


Dengan demikian pada suhu 25 °C reduksi ZnO(s) dengan C(s) tidak akan berlangsung. Namun apabila suhu proses dilakukan di atas 1000 °C, maka reduksi tersebut akan berlangsung.

Pemurnian

Pemurnian (refining) adalah suatu proses untuk merubah logam kotor menjadi logam dengan kemurnian tinggi. Ada beberapa cara yang digunaan untuk melakukan pemurnian logam, yaitu : pelelehan (fusion), destilasi, kristalisasi, elektrolisis, proses Parkes, proses Van Arkel (vapour phase refining), zone-refining, proses Mond (purification via the volatile carbonyl compound), dan proses Bassemer (open hearth process).

Pemurnian dengan pelelehan (fusion)

Proses ini biasanya dipakai untuk memurnikan logam Sn, Pb dan Bi. Batang logam kotor ditempatkan dalam tungku yang dipanaskan pada suhu di atas titik leleh logam. Lelehan logam murni ada di bagian atas, sedangkan pengotor berada pada bagian bawah. Untuk memisahkan lelehan logam murni dari pengotor dilakukan dengan memiringkan tungku sehingga lelehan logam murni mengalir ke celah samping tunggku.

Pemurnian dengan destilasi

Logam-logam mudah menguap dapat dimurnikan dengan destilasi. Misalnya Hg, pemisahan Zn-Cd-Pb dengan destilasi praksional. terpisahkan dari yang satu dengan yang lainnya.

Pemurnian dengan kristalisasi

Metode ini banyak dilakukan untuk memurnikan logam-logam lantanida melalui garam rangkapnya dengan kalium dan natrium. Demikian juga untuk pemisahan Pt dan Ir melalui amonium heksakloroplatinat dan iridiat.

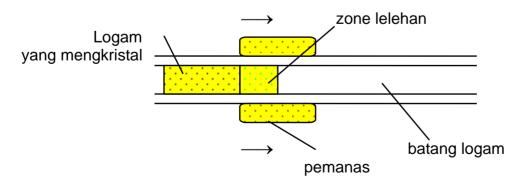
Pemurnian dengan elektrolisis

Sel elektrolitik yang dipakai harus terbuat dari anode logam kotor (logam yang akan dimurnikan), sedangkan katode terbuat dari logam murni yang dilapisi lapisan tipis grafit agar logam murni yang dihasilkan mudah dilepas, sedangkan elektrolit yang digunakan adalah larutan garam dari logam yang akan dimurnikan. Selama elektrolisis berlangsung logam kotor sebagai anode akan larut, sedangkan logam murni akan diendapkan pada katode. Pemurnian dengan cara ini hanyalah dapat dilakukan untuk logam-logam yang keelektropositifannya rendah seperti Cu, Sn, Pb, Au, Zn, Cr, dan Ni. Jadi metode ini digunakan untuk logam yang tidak bereaksi dengan air, mudah dioksidasi pada anode, dan mudah direduksi pada katode.

Pemurnian proses Parkes

Proses ini digunakan untuk pemurnian logam Pb, juga pada pemekatan logam Ag. Sekitar 1-2% Zn ditambahkan pada lelehan Pb yang mengandung pengotor Ag. Perak lebih mudah larut dalam seng, sedangkan Pb tidak larut. Dengan demikian logam Pb murni mudah dipisahkan.

Pemurnian proses Van Arkel


Proses ini disebut juga pemurnian fase uap. Proses ini dilakukan untuk halida mudah menguap. Halida dimurnikan melalui destilasi fraksional, halida tersebut mengurai menjadi logam dan halogen pada suhu tinggi. Misalnya

$$Zr(s) + 2I_2(g) \longrightarrow ZrI_4(s) \xrightarrow{\text{filamen}} Zr(s) + 2I_2(g)$$

Logam-logam Ti, Hf, Zr, V, W, Si dan Be dimurnikan dengan cara ini.

Pemurnian dengan zone-refining

Metode ini digunakan untuk memperoleh unsur yang kemurniannya sangat tinggi seperti semikonduktor Si, Ge, dan Ga. Sirkulasi panas dipasang pada batang logam kotor, kemudian digerakan secara lambat.Logam murni akan mengkristal di sebelah samping lelehan logam, dan pengotor tersebar di dalam zone lelehan.

Pemurnian proses Mond

Pemurnian cara ini disebut juga pemurnian melalui senyawa mudah menguap karbonil. Prinsipnya sama dengan metode Van Arkel tetapi cara ini hanya digunakan untuk Ni.

Nikel kotor direaksikan dengan CO pada suhu 60-80 °C. Nikel bereaksi membentuk gas nikel karbonil, dan pengotor tertinggal sebagai zat padat. Nikel murni diperoleh dengan pemanasan gas karbonil pada suhu 180-200 °C.

Pemurnian proses Bassemer

Proses Bassemen disebut juga proses tungku terbuka (open hearth process). Karbon dari kokas digunakan sebagai pereduksi. Silikon, fosfor, dan belerang dari bijih dioksidasi dan menguap sebagai terak (slag) dari besi. Di dalam proses bassemer besi mentah (pig iron) dari proses tanur tinggi diubah menjadi butiran (pelet). Udara dialirkan melalui lelehan yaitu untuk mengoksidasi pengotor. Proses dilangsungkan pada keadaan cepat (10-15 menit)

Tabel 1.9
Tabel lengkap Ekstraksi Logam

Unsur	Sumber	Metode Ekstraksi	Catatan
Hidrogen	Tersebar sebagai penyu- sun air dan senyawa lain		
Litium	• Spodumene : LiAl(SiO ₃) ₂ • Lepidolite : (lithia mica)	Elektrolisis lelehan LiCl/KCl	Logam-logam elektro- positif golongan IA.
Natrium	 Garam batu: NaCl Feldspar: NaAlSi₃O₈ Sendawa Chili: NaNO₃ Boraks: NaB₄O₇.10H₂O 	Elektrolisis lelehan NaOH atau NaCl/CaCl ₂	Garam-garamnya dari asam kuat larut dalam air. Sebagai kation dalam batuan alumino-silikat.
Kalium	• Carnallite : KCl . MgCl ₂ .H ₂ O	Elektrolisis lelehan KCl/CaCl ₂	Kereaktifannya tinggi, sehingga dalam ekstraksi

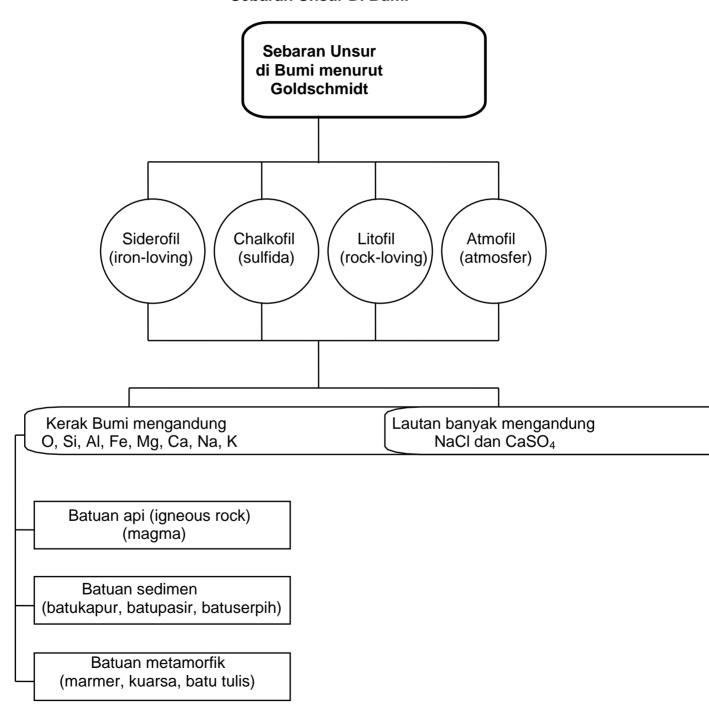
	Berbagai Aminosilikat Sendawa (saltpetre): KNO ₃		logamnya perlu dilakukan dalam kondisi anhidros.
Unsur	Sumber	Metode Ekstraksi	Catatan
Rubidium	Berhubungan dengan K dan Li	Untuk Rb dan Cs dilakukan dengan pendesakan klorida-	
Cesium	Pollucite, cesium aluminium silikat	nya dengan kalsium : 2RbCl + Ca ♣ 2 Rb + CaCl ₂	
Berilium	• Beryl : 3BeO.Al ₂ O ₃ . 6SiO ₃ • Chrysoberyl : BeO. Al ₂ O ₃	Elektrolisis lelehan BeF ₂ / NaF atau mereduksi BeF ₂ dengan Mg	Be merupakan unsur yang unik di dalam golongan IIA berada sebagai campuran oksida
Magnesium	• Carnallite: KCl.MgCl ₂ . 6H ₂ O • Magnesite : MgCO ₃ • Spinel : MgAl ₂ O ₄ • Olivine : Mg ₂ SiO ₄	Elektrolisis lelehan KCl/MgCl ₂ Reduksi MgO dengan C	 Logam-logam yang lebih elektropositif dari golong- an IIA. Berada sebagai senyawa silikat dan garam-garam
Kalsium	 Dolomit: CaCO₃ . MgCO₃ Batu gamping: CaCO₃ Gips: CaSO₄ Fluorspar: CaF₂ Apatit: CaF₂ . 3Ca₃(PO₄)₂ 	Elektrolisis lelehan CaCl ₂ /CaF ₂	yang kelarutannya kecil. • Reduksi dengan C hanya dilakukan untuk menghasilkan Mg, sedangkan untuk logam alkali
Stronsium	• Strontianite : SrCO ₃ • Celestine : SrSO ₄	Elektrolisis lelehan halida	tanah yang lebih aktif akan menghasilkan karbida.
Barium	• Witherite : BaCO ₃ • Barytes : BaSO ₄	Reduksi oksida dengan Al	
Boron	 Boraks: Na₂B₄O₇. 10H₂O Colemannite: Ca₂B₆O₁₁. 5H₂O 	Reduksi termal B ₂ O ₃ dengan Na, Mg, Al	Keunikan unsur golongan IIIA yng berada sebagai anion
Aluminium	 Bauksit : Al₂O₃. 2H₂O Kriolit : Na₃AlF₆ Batuan alumino-silikat 	Reduksi elektrolitik Al ₂ O ₃ yang dilarutkan dalam lelehan kriolit	
Skandium Yttrium dan logam tanah jarang berat Eropium - Lutesium	 Thorveitite: Sc₂Si₂O₇ Gadolinite (siliakat hitam dengan besi) Xenotime (fosfat) Yttrotantalite Samarskite Fergusonite (kompleks niobate dan tantalate) 	Elektrolisis lelehan klorida	Logam-logam golongan IIIB berada sebagai silikat dan fosfat. Sebagai kontraksi lantanida y mempunyai jari-jari ionik yang sama dengan lantanoida berat.
Cerium dan logam tanah jarang ringan Lantanum - Samarum	 Monazite : fosfat Cerite : silikat hidrat Orthite : silika kompleks 	Elektrolisis lelehan klorida	

Torium	Monazite:	Reduksi ThO ₂ dengan Ca	
	• Thorite : ThO ₂		

Unsur	Sumber	Metode Ekstraksi	Catatan
Uranium	 Pitchblende: U₃O₈ Carnolite: K₂O. 2UO₃. V₂O₅ 	Reduksi UF ₄ dengan Ca atau Mg	
Karbon	 Intan, grafit Dolomit, kapur Batu gamping, batu bara	Destilasi destruktif batu bara	Didapat sebagai unsur bebas atau sebagai karbonat
Silikon	 Kuarsa : SiO₂ Beberapa silikat dan alumino - silikat 	 Reduksi elektro termal SiO₂ Reduksi SiCl₄ oleh Zn atau hidrogen 	Merupakan unsur dengan kelimpahan terbanyak diikuti oleh oksigen
Titanium	 Ilmenite : TiO₂ . FeO Rutile : TiO₂ 	Reduksi TiCl ₄ oleh Mg (proses Kroll) atau Na	Logam-logam golongan IVB mempunyai afinitas sangat
Zirkonium	Baddeleyite : ZrO₂Zircon : ZrSiO₄	Reduksi ZrCl ₄ oleh Mg	tingi dengan oksigen. Perlu diubah menjadi halida
Hafnium	Bersamaan dengan Zr : biasanya Hf terdapat jika kandungan Zr 1-2%	As untuk Zr	kemudian direduksi di dalam atmosfir. Hf sangat mirip dengan Zr karena kontraksi lantanida
Vanadium	 Vanadinite: 3Pb₃ (VO₄)₂. PbCl₂ Carnolite: Patronite: sulfida 	Reduksi aluminotermal dari V_2O_5	Logam-logam golongan VB mempunyai afinitas lebih kecil terhadap oksigen daripada logam-logam
Niobium	Niobite : Fe(NbO ₃) ₂ mengandung Ta	Reduksi K ₂ NbF ₇ atau K ₂ TaF ₇ dengan Na	transisi golongan selanjutnya. Hanya logam V ditemukan
Tantalum	Tantalite : Fe(TaO ₃) ₂ mengandung Nb	Elektrolisis lelehan K_2TaF_7 $Ta_2O_5 + 5TaC \rightarrow 7Ta + 5CO$	sebagai sulfida
Krom	 Chromite: FeO. Cr₂O₃ Crocoisite: PbCrO₄ 	 Reduksi Cr₂O₃ oleh Al atau Si Elektrolisis larutan larutan garam Cr(III) 	Logam-logam golongan VIB ini terdapat sebagai oksida cmpuran atau sebagai bagian oksianion
Molibden	 Molybdenyte: MoS₂ Wulfenite: PbMoO₄ 	Reduksi MoO ₃ oleh hidrogen	MoS ₂ merupakan pengecualian
Wolfram	 Wolframite: FeWO₄ / MnWO₄ Scheelite: CaWO₄ Tungstite: WO₃ 	Reduksi WO ₃ oleh hidrogen	Metoda ekstraksi bijih-bijih oksida awalnya melibatkan pemanggangan dengan Na ₂ CO ₃ untuk membentuk garam Na yang larut dalam air
Mangan	 Fyrolusite : MnO₂ Hausmannite : Mn₃O₄ 	Reduksi Mn ₃ O ₄ oleh Al atau C	Logam dalam golongan VIIB hanya Mn merupakan logam
Teknesium	Sedikit di alam biasanya diisolasi dari hasil pemecahan inti	Reduksi amonium perteknat oleh H_2	komersial yang penting
Renium	Melibdenite mengandung 20	Reduksi amonium perrhenat	

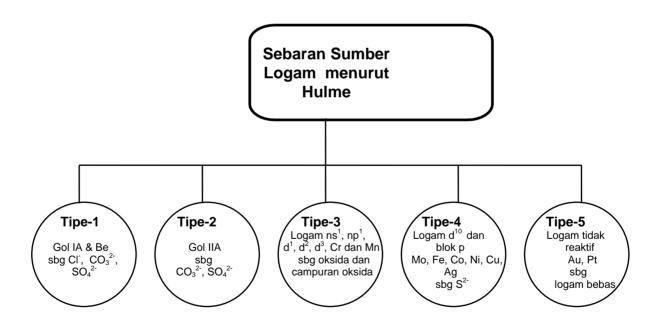
ppm Re dan sumber logam	oleh H ₂	
yang mahal		

Unsur	Sumber	Metode Ekstraksi	Catatan				
Besi	 Magnetite: Fe₃O₄ Haematite: Fe₂O₃ Firit: FeS₂ 	Reduksi oksida oleh CO pada tanur tinggi	Ekstrasi besi dan pengubahan menjadi baja merupakan proses metalurgi sangat penting				
Kobalt	Bergabung dengan Cu dan Ni sebagai sulfida dan arsenida Smaltite: CoAs ₂	Reduksi oksida oleh C atau gas air	Kobalt dan nikel umumnya lebih sedikit dari besi dan biasa ditemukan sebagai low-grade-ors				
Nikel	 Terdapat dalam pentlandite besi sulfida mengandung sampai 3% Ni Garnierite : silika Mg dan Ni yang dihasilkan oleh pencuacaan Millerite : NiS 	 Reduksi oksida dengan C, dilanjutkan dengan pemurnian elektrolitik. Proses karbonil Mond					
Rutenium Rodium Paladium Osmium Iridium Platinum	 Sebagai logam : aliasi osmium. 0,5 ppm dalam besi sulfida yang mengandung nikel (sumber utama). Bijih langka : Braggite : PdS Sperrylite : PtAs₂ 	Residu dari proses nikel karbonil, dibuat senyawa murninya. Kemudian dilakukan penguraian secara termal: PdCl ₂ (NH ₃) ₂ menjadi Pd, dan (NH ₄) ₂ PtCl ₆ menjadi Pt	 Energi bebas pembentukan senyawa platinum adalah rendah. Unsur-unsur ini berada dalam keadaan bebas sebagai logamnya atau dalam bentuk senyawa yang mudah direduksi. 				
Tembaga	 Copper pyrites: CuFeS₂ Cuprite: Cu₂O Malachite: CuCO₃ .Cu(OH)₂ Logam bebas 	 Oksidasi parsial bijih sulfida: 2Cu₂O + Cu₂S → 6Cu + SO₂ Pelindian (leaching) dengan H₂SO₄ diikuti elektrolisis. 	 Ditemukan dalam bentuk logam bebas. Ekstraksi dari bijih sulfida dilakukan dengan pyro- atau hydro- metalurgi. 				
Perak	 Argentite : Silfide Horn silver : AgCl Logam bebas	 Pelindian bijih sulfida dengan natrium sianida. Pembentukan Ag(CN)₂ kemudian Ag diendapkan dengan Zn 					
Emas	Logam bebasSedikit terdapat dalam bijih firit	Pelindian sianida seperti pada Ag					
Seng	• Seng blende, wurtzite : ZnS • Calamine : ZnCO ₃	Untuk Zn dan Cd, bijih sulfida dipanggang menjadi oksida kemudian direduksi dengan C.	 Bijih golongan IIB sebagian besar berada sebagai sulfida. Logam-logam ini dengan mudah diekstraksi dari 				


			bijihnya.			
Kadmium	Terdapat dalam bijih seng dalam jumlah kecil	Elektrolisis ZnSO ₄ untuk pembuatan Zn.				
Raksa Cinnabar : HgS		Penguraian termal : $HgS + O_2 \rightarrow Hg + SO_2$]			
Unsur	Sumber	Metode Ekstraksi	Catatan			
Galium	Berada dalam seng blende dan bauksit dalam jumlah kecil.	 Dihasilkan pada ekstraksi Zn. Elektrolisis bauksit yang dilindi alkali 	Tidak ada bijih logam golongan IIIA yang diketahui			
Indium	Berada dalam seng blende dan cassiterite dalam jumlah kecil	In dan Tl diperoleh dengan mengelektrolisis atau reduksi kimia debu pembakaran firit				
Talium	Ditemukan di dalam firit					
Germanium	 Di dalam seng blende Bijih jarang : komplkes sulfida, 4Ag₂S . GeS₂ 	Reduksi GeO ₂ dengan H ₂	Logam-logam golongan IVA ditemukan sebagai sulfida, kecuali Sn.			
Timah	Cassiterite : SnO ₂	Reduksi SnO ₂ dengan C	Pemurnian elektrolitik Sn dengan pelarut air adalah penting.			
Timbal	Galena: PbS	Pemanggangan sulfida menjadi oksida, kemudian direduksi dengan C				
Fosfor	 Apatite: CaF₂. 3Ca₃(PO₄)₂ Chlorapatite: CaCl₂. Ca₃(PO₄)₂ 	Reduksi arkus listrik oleh karbon dengan adanya SiO ₂ (untuk membentuk kalsium silikat)	Bijih-bijih sulfida unsur berat golongan ini merupakan hal yang penting			
Arsen	Nickel glance : NiAsSMispickel : FeAsS	Pemanggangan bijih tanpa ada udara				
Antimon	Stibnite : Sb ₂ S ₃	Reduksi sulfida dengan besi	Merupakan contoh penting dari ekstraksi unsur dengan melakukan reduksi sulfida secara langsung			
Bismut	 Bismuth glance: Bi₂S₃ Bismuthtite: Bi₂O₃ 	Reduksi oksida oleh karbon				
Belerang	Sebagai unsur bebas Sebagai sulfida dan sulfat					
Selenium	Ditemukan dalam bijih-bijih	Reduksi senyawanya dengan	Cu			
Telurium	yang mengandung belerang	SO_2				
Florin	Fluorspar : CaF ₂ Kriolit : Na ₃ AlF ₆	Elektrolisis campuran lelehan KF/HF	Halogen selalu ditemukan sebagai anion.			
Klorin	Sebagai ion klorida dalam air laut. Sebagai padatan klorida	Elektrolisis air laut	Florin mempunyai keelektronegatifan tinggi dan reaktif, hanya dihasilkan dengan elektrolisis lelehan garam anhidros.			
Bromin	Ditemukan dalam air laut dan garam	Pendesakan oleh klorin : $MgBr_2 + Cl_2 \rightarrow MgCl_2 + Br_2$	Ekstraksi halogen makin mudah pada unsur yang lebih berat (makin ke bawah dalam golongan)			
Iodin	< 0,1 ppm dalam air laut tetapi banyak dalam rumput laut . Sebagai iodat NaIO3 dalam chilea nitrate	Reduksi iodat dengan bisulfit				

Rangkuman

Struktur Bumi



Aturan Goldschmidt

- Jika dua ion mempunyai jari-jari sama atau hampir sama dan muatan sama, maka ion-ion tersebut akan terdistribusi dalam mineral yang berbanding lurus dengan kelimpahannya disertai pergantian isomorf dari satu ion dengan ion yang lain.
- 2) Jika dua ion mempunyai jari-jari hampir sama dan muatan sama, ion berukuran lebih kecil akan mengkristal lebih awal.
- 3) Jika dua ion mempunyai jari-jari hampir sama tetapi muatan berbeda, maka ion dengan muatan lebih tinggi akan mengkristal lebih awal.

Soal Penguasaan Konsep

Tidak semua senyawa logam dapat direduksi oleh C atau CH₄. Manakah oksida-oksida di bawah ini yang dapat direduksi oleh kedua oksidator tersebut ?

Energi	PbO	CuO	Fe ₂ O ₃	AI_2O_3	MgO	С	CH ₄	Pb	Cu	Fe	ΑI	Mg	CO_2
$\Delta \text{H}^{\circ}_{298}(\text{kJmo}^{-1})$	-217,5	-155,2	-822,2	-1675,7	-601,7	0	-74,8	0	0	0	0	0	-393,7
$\Delta S^{\circ}_{298}(Jmol^{-}1K^{-1})$	68,7	43.5	90,0	50,9	26,8	5,7	186,2	64,8	33,3	27,2	27,9	32,7	213,8

Ramalkan banyaknya logam yang tereduksi selama 1 jam mengelektrolisis 1 mol L⁻¹ larutan-larutan di bawah ini, anode terbuat dari karbon, katode terbuat dari besi dengan voltase yang digunakan 6V

AgNO₃; $Fe(NO_3)_3$; $Al_2(SO_4)_3$; $MgSO_4$; K_2SO_4 ; $ZnSO_4$; dan $CuSO_4$.

Pemekatan Bijih

Tahap ini perlu dilakukan untuk bijih yang memiliki *low-grade ore*. Bahan yang tidak diinginkan dihilangkan melalui metode fisika atau kimia atau gabungan dari keduanya. Metode fisika terdiri dari pemisahan gravity, proses pengapungan (floatation), dan bahkan untuk bijih yang mengandung sifat magnet dilakukan melalui pemisahan magnetik.

Metode kimia disebut pula *hydrometallurgy*. Pada proses ini dilakukan pencucian (leaching) bijih oleh larutan untuk mengekstraksi logam yang dibutuhkan dalam bentuk suatu garam yang larut. Contoh penting operasi hidrometalurgi adalah :

Melarutkan CusS dalam asam sulfat dengan danya oksigen atmosfer untuk

Melarutkan Cu₂S dalam asam sulfat dengan danya oksigen atmosfer untuk menghasilkan tembaga sulfat.

- Pencucian bijih perak dengan larutan natrium sianide (NaCN) sehingga perak terekstraksi dalam bentuk senyawa kompleks [Ag(CN)₂]⁻.
- Pencucian bijih uranium dengan asam sulfat atau natrium karbonat, kemudian pemurniannya dilakukan dengan menggunakan proses penukar ion (ion-exchange).
- Pencucian amoniakal dari bijih sulfida yang mengandung Ni, Co, dan Cu dengan adanya oksidator untuk membentuk kompleks logam amina.
- Pengendapan magnesium dari air laut sebagai hidroksida. Penghancuran bauksit dengan natrium hidroksida untuk mengekstraksi aluminium sebagai aluminat yang larut dan melepaskan bahan tidak larut sebagai residu.