JURUSAN PENDIDIKAN MATEMATIKA FPMIPA - UNIVERSITAS PENDIDIKAN INDONESIA

SATUAN ACARA PERKULIAHAN SUBJECT : COMPLEX FUNCTION (3 SKS) CODE : MAT 516

WEEK	TOPIC AND SUB- TOPIC	TUJUAN INSTRUKSIONAL UMUM (TIU)	TUJUAN INSTRUKSIONAL KHUSUS(TIK)	FOCUS	METHOD	MEDIA	TEST	REFERENCE
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	 Complex Number 1.1 Complex Numeric System 1.2 Complex Number Geometry 	Students understand deeply the complex number definition and theorems, and also able to implement it in problem solving.	Students are able to define complex number. Students are able to proof the field characteristics of complex numeric system. Students are able to proof conjugate operation. Students are able to define argument and modulus of complex number. Students are able to proof modulus characteristics	 Complex number definition Field characteristics of complex number Conjugate operation Argument and modulus of complex number Modulus characteristics 	Expository, discussion, combination, deductive, inductive and giving tasks.	Books and OHP	Tests are given to measure students competency in this subject. Tests are given twice through UTS (mid- term test) and UAS (end-term test)	Churchill, R.V., 1990. Complex Variables And Applications, Fifth Edition. New York: Mc. Graw-Hill Publishing Comp. Paliouras, J.D., 1975. Complex Variables for Scientists and Engineers. New York: Macmillan Publishing Co. Inc. Soemantri,R.,1994. Fungsi Variabel Kompleks. Depdik- bud Dikjen Pendi- dikan Tinggi Proyek Penulisan dan Peningkatan Mutu Tenaga Kependidkan.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
2	1.3 Complex	Students understand	Students are able to	- De Moivre				
	number roots.	deeply the complex	proof De Moivre	Theorem				
		number definition	theorem					
	2. Complex Function	and theorems, and	Studente era abla ta	- n root square of				
	2.1 Complex	implement it in	define n root square	complex number				
	Function	problem solving	of complex number	Definition of				
		problem solving.	of complex number.	complex				
			Students are able to	function				
			define complex					
			function.	- Operation on				
				complex				
			Students are able to	function				
			define operation on	~ .				
			complex function.	- Composite				
			Studente ere eble te	Function				
			define composite					
			function					
3	2.2 Elementary		Students are able to	- Linear function				
-	Function		define linear					
			function, reverse	- Reverse				
			function, bilinear	function				
			function, exponential					
			function and	- Bilinear				
			logarithmic function.	function				
			Students are able to	Exponential				
			proof exponential and	function				
			logarithmic	runction				
			characteristics.	- Logarithmic				
				function				
			Students are able to					
			solve exponential and					
			logarithmic equation.					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
4			Students are able to define trigonometry and hyperbolic function. Students are able to trigonometry and hyperbolic characteristics. Students are able to solve trigonometry and hyperbolic equation.	 Trigonometry function Hyperbolic function 				
5	 3. Elementary Transformation 3.1 Linear transformatio n 3.2 Reverse transformatio n 	Students are able to understand deeply the transformation definition and theorems and able to implement it in problem solving.	Students are able to define linear transformation geometry. Students are able to determine rotation transformation matrix. Students are able to define reverse transformation geometry Students are able to determine straight line and circle map by reverse transformation.	 Linear transformation geometry definition Rotation transformation matrix Reverse transformation geometry definition Straight line and circle map by reverse transformation 				

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
6	 3.3 Bilinear Transformatio n 4. Analytical Function 4.1 Main concept of Topology in Complex Field. 	Students are able to understand deeply the definition and theorems of analytical function and able to implement it in problem solving.	Students are able to define bilinear transformation geometry. Students are able to determine linear and bilinear transformation function. Students are able to define area, open set, closed set, limit point set, and also interior and exterior of a complex set.	 Bilinear transformation geometry definition Determine linear and bilinear transformation function Definition of area, open set, closed set, limit point set, and also interior and exterior of a complex set 				
7	4.2 Limit Function		Students are able to define limit function of a point. Students are able to define limit function of an area. Students are able to define limit function characteristics.	 Limit function definition Limit function characteristics 				
8				MID-TERM TEST	L			

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
9	4.3 Function continuity		Students are able to proof the theorem to calculate limit of complex function	- Theorem to calculate limit of complex function				
			Students are able to define function continuity of a point	- Function continuity definition				
			Students are able to define function continuity of a region	- Continuity of summary, multiplication, and division of complex				
			Students are able to proof function continuity of	function - Composite				
			summary, multiplication, and division of two	function continuity				
			complex function on a region.	- Polynomial function continuity and				
			proof composite function continuity on a region.	continuity				
			Students are able to proof polynomial function continuity					
			and rational function continuity					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
10	4.4 Complex function derivative.		Students are able to define complex function derivative. Students are able to proof derivative function rules of algebra operations on two functions Students are able to proof complex function derivative characteristics. Students are able to proof complex function derivative.	 Definition of complex function derivative Function rules of algebra operations on two functions Complex function derivative characteristics Composite function derivative. 				
11	4.5 Cauchy Riemann Equation.		Students are able to proof obligatory and adequate terms of complex function derivative	- Obligatory and adequate terms of complex function derivative				
12	4.6 Analytical Function		Students are able to define analytical function on a region. Students are able to define singular point Students are able to proof the relation of Cauchy Reimann theorem and the analytical of a function.	 Analytical function definition Singular point definition Relation of Cauchy Reimann theorem and the analytical of a function 				

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			Students are able to define harmonic function. Students are able to construct an analytic function.	- Harmonic function				
13	5. Complex Integration. 5.1 Complex Integral	Students are able to deeply understand the definition of comlex integral and its theorems, and also able to implement it in problem solving,	Students are able to define curve, flawless curve, orbit, simple closed curve, complicated closed curve, and orientation of simple closed curve. Students are able to construct complex integral. Students are able to proof the existence of integral complex. Student are able to proof the characteristics of complex integral.	 Definition of curve, flawless curve, orbit, simple closed curve, complicated closed curve, and orientation of simple closed curve. Construction of complex integral Existence of complex integral Complex integral characteristic 				

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
14	5.2 Cauchy		Students are able to	- Teorema				
	Integral		proof Cauchy theorem	Cauchy				
			Students are able to	- Cauchy Goursat				
			proof Cauchy Goursat	Theorem				
			Theorem					
				- Extension of				
			Students are able to	Cauchy Goursat				
			Couchy Courset	Theorem				
			Theorem	First base				
			Theorem	- Thist base				
			Students are able to	integral theorem				
			proof first base	integrar theorem				
			complex integral	- Second base				
			theorem.	complex				
				integral theorem				
			Students are able to	0				
			proof second base					
			complex integral					
			theorem.					
15	5.4 Annulus		Students are able to	- Definition of				
			define annulus between	annulus				
			two simple closed orbit	between two				
				simple closed				
			Students are able to	orbit				
			proof Annulus	A				
			Ineorem	- Annulus				
			Students are able to	Theorem				
			proof the extension of	Extension of				
			Appulus Theorem	- Extension of				
				Theorem				
			Students are able to	Theorem				
			proof integral Cauchy	- Integral Cauchy				
			equation	equation				
16				END-TERM TEST		1		