CHAPTER 6 STATEMENTS AND SOME OPERATIONS

Statements

A statement will be denoted by a letter *p*, *q*, *r*, ...

The fundamental property of a statement: true, false, but not both.

The truthfulness or falsity of a statement is called its *truth value*. The truthfulness of p is denoted by $\tau(p)$.

Example:

- "What are you going to do?" is not a statement (it is neither true nor false)
- 2. "Please solve all these problems" is not a statement (it is neither true nor false, as it is just an instruction)
- 3. "Bandung is the capital city of West Java and 3+3 = 33" is a statement (it is true)
- 4. "Jakarta is in Java Island" is a statement (it is true)

Example:

- 1. p: 4 + 7 = 47. Then $\tau(p) = F$.
- 2. q: 2 is a prime number. Then $\tau(q) = T$.

Operations on Logic

Unary Operations: Negation **Binary Operations**: Conjunctions, Disjunctions, Implication, Biimplication

Conjunction

Any two statements can be combined by the word "and" to form a composite statement. This operation is called *conjunction*.

Symbolically, the conjuction of the two statement *p* and *q* is denoted by $p \land q$.

Example:

- p: 3 is odd-prime number.
- q: 2 is even-prime number.

 $p \wedge q$: 3 is odd-prime number and 2 is even-prime number".

p : a square is a polygon.

q: a parallelogram is a polygon.

 $p \wedge q$: A square and a parallelogram are a polygon.

Truth Tables

A convenient way to state the truthfulness of a compound statement is by means of a truth table as follows:

 $\begin{array}{cccc} p & q & p \land q \\ T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$

Disjunction

Any two statements can be combined by the word "or" to form a composite statement. This operation is called *disjunction*.

Symbolically, the disjunction of the two statement p and q is denoted by $p \lor q$.

Example:

- 1. p: Paris is in France. q: 2+5=7. $p \lor q$: Paris is in France and 2+5=7.
- 2. p: 7 is an odd number. q: 7 is a *prime number*. $p \lor q: 7$ is an odd and prime number.

We can express the truthfulness of a conjunction statement by using the following truth table:

 $\begin{array}{cccc} p & q & p \lor q \\ T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$

Implications, conditional statement

Any statements which is in the form of "If p then q" is called *conditional statement*, and the operation is called *implication*.

Symbolically, the implication "If *p* then q" is denoted by $p \rightarrow q$.

The conditional statement $p \rightarrow q$ can also be read as

(a) p implies q.
(b) p only if q.
(c) p is sufficient for q.
(d) q is necessary for p.

Example:

1. *p* : Paris is in France.

q: 2+5=7. $p \rightarrow q:$ If Paris is in France, then 2+5=7.

2. p: 7 is an odd number. q: 7 is a *prime number*. $p \rightarrow q:$ If 7 is an odd number, then 7 is a prime number.

We can denote an implication operation (for conditional statement) by using apllying the truth table as follows:

 $\begin{array}{cccc} p & q & p \rightarrow q \\ T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$

Biimplications, biconditional statement

Any statements which is in the form of "p if and only if q" is called *biconditional statement*, and the operation is called *biimplication*.

Symbolically, the implication "*p* if and olnly if q" is denoted by $p \Leftrightarrow q$.

Example:

1. p: Surabaya is in East Java. q: 111 + 11 = 11111. $p \Leftrightarrow q$: Surabaya is in East Java if and only if 111 + 11 = 11111.

2. p: 8 is a composite number.
q: 8 is not a *prime number*.
p ⇔ q: 8 is a composite number if and only if 8 is not a prime number.

Biimplication operations (for constructing biconditional statements) can be represented by a truth table.

The following table describe the truthfulness of the statement $p \Leftrightarrow q$:

 $\begin{array}{cccc} p & q & p \Leftrightarrow q \\ T & T & F \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$

The following is an abbreviated truth table:

$$(p \rightarrow (q \land r)) \land (\neg p \rightarrow (\neg q \land \neg r))$$

T T T
T F
T F T
T F F
T F F

F T T F T F F F T F F F