COURSE: MATRIX ALGEBRA (2 credit) CODE: MT 304

Description: The purpose of this course is to improve students' ability in understanding basic concepts of Matrix Algebra

As provisions for teaching school mathematics, as prerequisite for Linear Algebra, and other course. The material included in this course are understanding of matrix, various of matrix, matrix arithmetic, system of linear equations, homogeneous systems of linear equations, matrix inverse, determinant, and transformation

Prerequisite: -

Resources: 1. Howard Anton. (1995). Elementary Linear Algebra. New York: John Willey & Sons, Inc.

- 2. Raisinghania, M.D & Aggarwal R. S (1980) Matrices. New Delhi : S. Chan & Company Ltd.
- 3. Larry Smith. (1998). Linear Algebra. Gottingen: Springer.
- 4. Muliana Halim dan Irawati. (1992). Aljabar Linear Elementer. Bandung: Jurusan Matematika FMIPA ITB.
- 5. Setiadji. (1998). Pengantar Aljabar Linear. Yogyakarta: FMIPA UGM.

DEPARTEMENT OF MATHEMATICS EDUCATION FACULTY OF MATHEMATICS EDUCATION AND SCIENCE – INDONESIA UNIVERSITY OF EDUCATION

SILLABUS COURSE: MATRIX ALGEBRA (2 SKS) CODE: MT 304

WEEK	TOPIK ANDSUB	GOAL	OBJECTIVE		METHOD &			
	TOPIK			MATERIAL	APPROACH	INSTRUM	TEST	RESOURCES
						ENT		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	Matrix and	The students can	The purpose of this	1. The	Expository,	OHP or	Task 1	1. Howard Anton.
	Matrix	Understand the	course are the students	meaning	question-	LCD,		(1995).
	arithmetic	meaning of	be able to:	of	answer	computer,		Elementary
		matrix and	1.1. express definition of	matrix	method, and	and white		Linear
		various of matrix	matrix		task giving.	board.		Algebra. New
			1.2. make several					York : John
			examples of matrix					Willey &
			using right notation					Sons, Inc.
			1.3. determine order of a					2. Raisinghania,
								M.D &
			given metric					Aggarwal R.
			1.4 write general shape					S (1980)
			of m x n matrix					<i>Matrices</i> . New Delhi:
								S. Chan &
								Company
								Ltd.
								3. Larry Smith.
								(1998). <i>Linear</i>
								Algebra.
								Gottingen:
								Springer

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			1.5 determine location of an element of given matrix 2.1 formulate definition of certain various matrix through observation on given matrix 2.2 differentiate various of matrix 2.3 make relation between diagonal matrix, scalar matrix, and unit matrix 2.4 make minimum an example of each various of matrix	2. Various of Matrix				4. Muliana Halim dan Irawati. (1992). Aljabar Linear Elementer. Bandung: Jurusan Matematika FMIPA ITB. 5. Setiadji. (1998). Pengantar Aljabar Linear. Yogyakarta: FMIPA UGM.
2		The students can understand Matrix Operations and	3.1 determine requirement of matrix addition 3.2. determine requirement of matrix subs traction 3.3. determine requirement of multiplication between two matrices	3. Matrix Opera -tions	Expository, question- answer method, and task giving.	OHP or LCD, computer, and white board.	Task 2	The same as above

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		Rules of Matrix Arithmetic	 3.4. add a matrix and other one 3.5. do subs traction of matrices 3.6. multiply between scalar and matrix 3.7. multiply between a matrix and another one 3.8. find a_{ij} elements of product multiplication between a matrix and another one for certain i and j without finding product multiplication in general 					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			 3.9. determine transpose of a matrix 3.10. determine trace of a matrix 3.11. proof matrix arithmetic theorems 					
3	Discussion of hor	me work exercises for	or checking the students' un	derstanding	Question- answer method and discussion	White board		
4	System of Linear Equation	The student can understand about concept of system of linear equation and matrix.	 4.1 make example of linear equations 4.2 differentiate between an example and non-example of linear equation through observation on given equations 4.3. express definition of system of linear equation 	4. System of Linear Equation	Expository , question- answer method, and task giving.	OHP or LCD, computer, and white board.		The same as above
			5.1. differentiate between matrix in row-echelon form and matrix in reduced row-echelon form	5. Gauss- Jordan's elimination	Expository , question- answer method, and task giving	OHP or LCD, computer, and white board.	Home work to be discussed in next meeting	

(1)	(2)	(3)	(4)	(5	(6)	(7)	(8)	(9)
			5.2 reduce an augmented					
			matrix of linear					
			equation system to					
			matrix in row-					
			echelon form					
			5.3 reduce an augmented					
			matrix of linear					
			equation system to					
			matrix in reduced					
			row-echelon form					
			5.4. solve a linear					
			equation system					
			using Gauss					
			elimination					
			5.5. solve a linear equate					
			ion system using					
			gauss-Jordan					
			elimination					
			5.6. make minimum one					
			example of					
			inconsistent linear					
			equation system					
			which has variable					
			more than the					
			equation					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			6.1. write general shape of homogeneous system of linear equations consist of m equation with n variable.	6. Homogeneous systems of linear equations				
			6.2. make an example of homogeneoun system of linear equations which has trivial solution					
			6.3. make an example of homogeneous system of linear equations which has non-trivial solution					
			6.4. solve homogeneous system of linear equations					
			6.5. differentiate between consisten homogenious system of linear					

equations and inconsistent homogeneous	
system of linear equation 6.6. determine geometric illustration of a homogeneous system of linear equation 6.7. determine geometric illustration of a consisten homogenious linear equation system 6 Elementary The student can 7.1. express definition 7.Elementary	The same as bove

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			8.1. determine inverse	Invers of a				
			of a matrix using	Matrix.				
			elementary row					
			operation					
			8.2. determine					
			singularity of a					
			matrix					
			8.3. proof the theorems					
			of matrix's inverse					
			8.4. using matrix					
			inverse for solving					
			linear equation					
			system					
7	Discussion of ho	me work exercises	for checking the students' u	nderstanding	question-	White		
					answer	board		
					method			
					and			
					discussion			
8				EMSTER TEST				
9	Function of	The students be	9.1 make classification of		Expository,	OHP or	Doing	The same as
	determinant and	able to	a permutation	meaning	question-	LCD,	exercises	above
	it's	understand	9.2 make definition of	of deter-	answer	computer,	in the	
	characteristics	concept of	function of	minant	method, and	and white	class	
		function of	determinant through	function	task giving.	board.		
		determinant and	understanding of					
		it's	permutation					
		characteristics	and elementary					
		and using it to	multiplication					
		solve linear	product					
		equation system	9.3 establish formulation					
			of determinant					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			of square matrix of four order 9.4 determine determinant value of a matrix using determinant definition. 10. 1 proof the theorems of properties of determinant function 10.2 determine value of determinant using theorems of determinant's properties	10. Properties of determinant function				The same as above
			10.3 use determinant's properties for checking is a matrix invertible or not					
11	Discussion of he	ome work exercises	for checking the students' u	nderstanding	Question- answer method and discussion	White board		

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
12			11.1 find minor of an	11. Cofactor	Expository,	OHP or	Home	The same as
			element	expansion	question-	LCD,	work to be	above The
				and	answer	computer,	discussed	same as above
			11.2 find cofactor of an	Crammer's	method, and	and white	in next	
			element	rule	task giving.	board.	meeting	
			11.3 determine					
			determinant value					
			of a matrix using					
			cofactor					
			11.4 Find adjoint of a					
			matrix 11.5 determine inverse					
			of an invertible					
			matrix using					
			adjoint					
			11.6 using Crammer's					
			rule to solve a					
			linear equation					
			system					
13	Discussion of he	ome work exercises	for checking the students' u	understanding	Question-	White		
					answer	board		
					method and			
					discussion			
14	Plane	More understand	12.1 determine factor of	12.Translati-	Expository,	OHP or	Home	The same as
	Transformation	about plane	transformation	on, Ref-	question-	LCD,	work to be	above
		transformation	12.2 determine image	lection,	answer	computer	discussed	
			equation of a	Rotation,	method, and	, and	in next	
			geometric shape	and	task giving.	white	meeting	
			caused by a	Dilatation		board.		
			transformation					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			12.3 determine operator matrix for a plane					
			transformation					
			13. 1 determine operator matrix for a	13. Composition of				
			composition of plane	plane transfor-				
			transformation.	mation.				
			13. 2 determine the image of a					
			geometric shape					
			caused by a composition of					
			transformation12.3					
			determine operator matrix for a plane					
			transformation					
			13. 1 determine operator					
			matrix for a composition of					
			plane					
			transformation.					
			13. 2 determine the image of a					
			geometric shape					
			caused by a					
			composition of					
			transformation					

15		RESPONSE						
16	FINAL TEST							
	Approved by:		Bandung, November 2008					
Dean assistant 1		Head of Mathematics Education Program	Lecturer					
NIP.		NIP.	Dra. Hj. Ade Rohayati, M. Pd. NIP. 19600501 198503 2 002					