SYLLABUS CONTINUATION LINEAR ALGEBRA

DEPARTEMENT : Education of Mathematics

Faculty : FPMIPA

A. Identity :

Name	: Continuation Linear Algebra	
Code	: MT413	
Wight	: 3 SKS	
Semester	: 7 (Seven)	

B. Purpose :

After following this lecturing student is expected to earns : comprehends again understanding of matrix and linear transformation, matrix and linear transformation to use in finalizing problems, comprehends understanding of theorem spectral and quadratic form, comprehends understanding of canonic-form Jordan, and has knowledge to be able to apply linear transformation concept, theorem Spectral, quadratic form and canonic-form Jordan at problems related to other mathematics sciences or sciences.

Prerequisite :

Student has followed subject matter of Linear Algebra

Reference :

Smith, L., 1998, Linear Algebra, Third Edition, Spinger, New York

Valenza, R. J., 1993, Linear Algebra An Introduction to Abstract Mathematics, Spinger-Verlag, New York.

No	Торіс	Subtopic		
1	Introduction	 a. Linear Transformations and Matrices in R³ 		
		b. Matrices and Their Algebra		
		c. Special Types of Matrices		
		d. Exercises		
2	Representing Linear Transformations by	a. Projections		
	Matrices	 b. Nilpotent Transformations 		
		c. Cyclic Transformations		
		d. Exercises		
3	Systems of Linear Transformations	a. Existence Theorems		
		 Reduction to Echelon Form 		
		c. The Simplex Method		

C. Topic and Subtopik :

		d. Exercises
4	Inner Product Spaces	a. Scalar Products
		b. Inner Product Spaces
		c. Isometries
		d. The Riesz Representation Theorem
		e. Legendre Polynomials
		f. Exercises
5	The Spectral Theorem and Quadratic	a. Selft-Adjoint Transformationa
	Forms	b. The Spectral Theorem
		c. The Proncipal Axis Theorem for
		Quadratic Form
		d. A proof of the Spectral Theorem for
		Quadratic Forms
		e. Exercises
6	Jordan Canonical Form	a. Invariant Subspaces
		 b. Nilpotent Transformations
		c. The Jordan Normal Form
		d. Square Roots
		e. The Hamilton-Catley Theorem
		f. Inverses
		g. Exercises

Note. : *) is not studied in detail (as prerequisite matter)

No	Торіс	Minggu	Pertemuan	Subtopic
			Ke	
1	Introduction	1	1	 a. Linear Transformations and Matrices in R³ b. Matrices and Their Algebra c. Special Types of Matrices d. Exercises
2	Representing Linear Transformations by Matrices	2 3	2 3	 a. Projections b. Nilpotent Transformations c. Cyclic Transformations d. Exercises
3	Systems of Linear Transformations	4 5	4 5	 a. Existence Theorems b. Reduction to Echelon Form c. The Simplex Method d. Exercises
4	Inner Product Spaces	6 7	6 7	 a. Scalar Products b. Inner Product Spaces c. Isometries d. The Riesz Representation Theorem
5	Mid term test	8	8	
		9	9	e. Legendre Polynomials f. Exercises
6	The Spectral Theorem and Quadratic Forms	10 11	10 11	a. Selft-Adjoint Transformationab. The Spectral Theoremc. The Proncipal Axis Theorem
				for Quadratic Form
7		12	12	 d. A proof of the Spectral Theorem for Quadratic Forms e. Exercises
8	Jordan Canonical Form 13 14	13	13	a. Invariant Subspaces b. Nilpotent Transformations
		14	14	 c. The Jordan Normal Form d. Square Roots e. The Hamilton-Catley
		15	15	f. Inverses g. Exercises
9	Final test			

OUTLINE MT413 CONTINUATION LINEAR ALGEBRA (3 SKS)

Evaluasi :

- 1. Individual duty
- 2. Group duty
- 3. Group/individual presentation
- 4. Mid test

5. Final test

References :

Smith, L., 1998, Linear Algebra, Third Edition, Spinger, New York

Valenza, R. J., 1993, Linear Algebra An Introduction to Abstract Mathematics, Spinger-Verlag, New York.