COURSE: DISCRETE MATHEMATICS (3 Credits) CODE: MT 309

Description: A discrete mathematics course has more than one purpose. Students should learn a particular set mathematical fact and how to apply them; more importantly, such a course should a teach student how to think logically and mathematically.

The material included in this course are understanding of graphs and graph models, representing graphs and special types of graphs, walks, paths and cycles, Euler and Hamilton paths, planar graphs, trees, graph colouring, relations and their properties, representing relations, equivalence relations, partial orderings and lettice.

Prerequisite: -

Resources: 1. Kenneth.H. Rosen. (2007). Discrete Mathematics and its applications. Singapore: McGraw-Hill Companies Inc.

2. Robin J. Wilson (1996). Introduction to Graph Theory. London: Longman Group Ltd.

3. Heri Sutarno, Nanang Priatna, dan Nurjanah (2005). Matematika Diskrit.Malang: JICA IMSTEP.

4. F. Harary (1969). Graph Theory. Addison-Wesley.

5. Narsingh Deo ((1974). Graph Theory with Applications to Engeering and Compoter Science. Prentice Hall.

DEPARTEMENT OF MATHEMATICS EDUCATION FACULTY OF MATHEMATICS EDUCATION AND SCIENCE – INDONESIA UNIVERSITY OF EDUCATION

SILLABUS COURSE: DISCRETE MATEMATICS (3 credits) CODE: MT 309

WEEK	TOPIK AND SUB TOPIK	GOAL	OBJECTIVE	MATERIAL	METHOD & APPROACH	INSTRUM ENT	TEST	RESOURCES
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	Graphs and	The students can	The purpose of this	1. The	Expository,	OHP or	Task 1	1. Kenneth.H.
	Graph Models	Understand the meaning of	course are the students be able to:	meaning of graph	question- answer	LCD, computer,		Rosen. (2007).
		graph and	1.1. express definition of		method, and	and white		Discrete
		various of graph models	graph 1.2. make several		task giving.	board.		Mathematics
			examples of graph and no graph					and its
2	Graph	The students can	The purpose of this					applications.
2	Terminology	understand some	course are the students					Singapore:
	and Special	terminology that	be able to:					
	Types of	describes the	2.1. express definition of	2. Adjacency				McGraw-Hill
	Graphs	vertices and	adjacentin G	3. Isolated				Companies Inc.
		edges of	2.2. express definition of					
		undirected	isolated vertex	4.Pendant				
		graphs and	2.3. express definition of pendant vertex	Vertex 5. Degree of				2. Robin J.
		special types of graphs	2.4. express definition of	vertex				Wilson (1996).
		Grupiis	degree of vertex	VOICOA				Introduction to
			2.5. proof the handshaking					Graph Theory.

			theorem			London:
			2.6. introduce several classes of simple			Longman
			graphs			Group Ltd.
						3. Heri Sutarno,
2	Democratic		2.1	C a l'a sur sur		Nanang Priatna,
3	Representing Graphs	The students can Understand the	3.1. express definition of adjacency matices	6.adjacency matrices		dan Nurjanah
	1	meaning of	3.2. express definition of	7. incidence		(2005).
		adjacent matrices,	incidence matrices 3.3. express definition of	matrices 8.isomorphis		Matematika
		incidence	isomorphism	0.isomorphis		Diskrit.Malang:
		matrices and isomorphism				JICA IMSTEP.
4	special types of	The students can	4.1. express definition of	9. simple		JICA INISTEP.
	graphs	Understand	simple graph	graph		
		meaning of specia types of	4.2. express definition of bipartite graph	10. bipartite graph		4. F. Harary
		graphs	4.3. express definition of	11. sub graph		path(1969).
5	Walks, Paths	The students can	sub graph	12. walks		Graph Theory.
3	and cycles	Understand	5.1. express definition of walks	12. walks 13. paths		Addison-Wesley.
	2	meaning of	5.2. express definition of	14. cycles		
		walks, paths, and cycles	paths 5.3. express definition of			5. Narsingh Deo
			cycles			((1974). Graph
6	Euler and	The students can	6.1. express definition of	15. euler		Theory with
	Hamilton paths	Understand meaning of	euler and Hamilton paths	graph 16. Hamilton		Applications to
		euler and	Ē	graph		FF

7	Planar Graphs Tree and Graph Coloring	Hamilton path The students can Understand meaning of planar graph The students can Understand	 7.1. express definition of planar graph 8.1. express definition of tree 	17. planar graph 18. Tree			Engeering and Compoter Science. Prentice Hall.
	Coloring	meaning of tree and graph coloring	9.1. express definition of colouring vertices9.2. express definition of colouring maps9.3. express definition of edges	19. colouring vertices20. colouring maps21. colouring edges			
9	MID SEMESTER TEST						

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
10	relations and		10. determine	21. refleksif,	Expository,	OHP or	Task 2	1. Kenneth.H.
	their properties		requirement of relations and their	symmetri c,	question-	LCD,		Rosen.
			properties	antisym	answer method, and	computer, and white		(2007).
			properties	metric,	task giving.	board.		Discrete
11	representing		11.1. Representing	transitive				
	relations		Relations using matrices	22.				Mathematics
			11.2. Representing	Relations				and its
			Relations Using	23. Equivqlenc				applications.
12	equivalence		Digraphs 12.1. determine	e relations				Singapore:
12	relations		requirement of	24.Partial Ordering				McGraw-
			equivalence relations	25. Lettice				Hill
13	partial		13.1. determine					Companies
	orderings		requirement of					Inc.
1.4	T		partial orderings					me.
14	Lettices		14.1. determine requirement of					
			lettices					
15	Give exercises fo	Question-	White					
	and discussion (re	esponses)			answer	board		
					method and			

	discussion
16	FINAL TEST

Approved by:Bandung, September 2009Dean assistant 1Head of Mathematics Education ProgramLecturer

NIP.

NIP.

Dra. Nurjanah, M. Pd.

NIP. 131873720

SILLABUS COURSE: MATRIX ALGEBRA (2 CREDITS) CODE: MT 304

BY : ADE ROHAYATI

DEPARTEMENT OF MATHEMATICS EDUCATION

FACULTY OF MATHEMATICS EDUCATION AND SCIENCE INDONESIA UNIVERSITY OF EDUCATION

2008