THE LESSON PLAN

Purpose of the Task and Preparation

- 1. The Task : water-flask problem
- Subjects : Thirty-nine sixth-grade students in Fukuzawa Elementary School in Setagaya Ward- Tokyo.
- 3. Purpose : To have student discover various relations implicit in the problem situation where flask containing water is tilted; furthermore, if possible, to have students formulate the relation they discover into mathematical expressions and to explain logically the formulated relations.
- 4. Instruments and materials :
 - a. Ten water flask
 - b. Ten beaker for pouring water
 - c. A blank sheet of paper for each student
 - d. Ten blank transparency sheets for presentations by groups on the overhead projector (Note : we used a science laboratory because it was more convenient than an ordinary classroom for the use of beakers, flask, and water and for discussion)

Sequence of Presentation and Allocation of Time

The teacher used two forty-minute periods for the lesson. Two periods were used because other group members had found from their experience that more than one period was necessary. In most instances, one period allows insufficient time for discussion and a summary of all the students' finding, many of which are very interesting. Two periods, however, provided enough time for students explore the problem situation and discuss most, if not all, of their findings.

The First Period										
Teacher's Presentation and Direction	Student's Activities	Remarks	Cummulative Time in Minutes							
 When we tilt the flask with water in it while fixing one edge of the base on the table, we see that shape and size of various parts are changing. Find out as many relations among the parts as possible, and write them down 	1. Understanding the question	 Explain the problem by using a real flask with water Use the figure as a poster to make sure the students undertand the problem 	5							
2. Write down what you have noticed on the blank worksheet.	2. Trying to find out various rules (individual work)	 Distribute sheets to each student. Collect sheets on which students have written their findings 	25							
3. Within each group, discuss what you have found. The leader of each group should record group's observations.	3. Discussing within groups, and discovering various rules (group work)	5. Distribute new sheets to each group	40							
	The Second Pe	riod	L							
1. Please present the results of your group discussion	1. Groups take turns presenting their results.	1. List every response from the groups on a poster.	20							
2. Let's group together similar findings	2. Rules are grouped from various viewpoints	2. Have students group findings carefully so as not to duplicate or omit any.	30							

3.	We know the rule that $a + b$ is constant, where a and b are the lengths of the sides shown in figure. Can we explain the figure rule?	3. Students methodically consider why the property of the sum's being constant is true.	3. Assign <i>a</i> and <i>b</i> to the bases of the shaded trapezoid as in figure	40
4.	The teacher gives the reason, if necessary.	4. Students listen to the explanation		
5.	We can put in order other rules from different points of view.	5. Students summarize their finding		

Category Of	Of Number Students' Group Number						Number of						
Observations (findings)	of Rules	Observations (Rules)	1	2	3	4	5	6	7	8	9	10	Students Making Observations
Constant Sum	1	$a \pm h$ is	*	*	*		*			*		*	6
Constant Sum	1	a + 0.15											0
	2	The sum of the				*							1
	2	lengths of the											1
		edges above											
		the water											
		surface is											
		constant											
Variation	3	One edge						*	*				
		decreases by											
		the amount the											
		other increases											
	4	When one edge											
		increases, the											
		other decreases											
	5	The length of											
		the edges vary											
	6	The length of											
		the edge of the											
		water surface											
		becomes											
		greater											
	7	When one edge											
		becomes 0, the											
		other edge											
		becomes twice											
		its original											
Range	8	The limit of the											
		length of an											
		edge is 15 cm											
Shape of water	9	The water											
surface		surface (upper)											
		and the base											
		are rectangles											
	10	The water											
		surface is a											
		rectangles or											
		quadrangle	<u> </u>	<u> </u>							<u> </u>		
	11	The shape of											
		the base is											
		constant	1	1	1	1	1	1	1	1			

<u>Summary of Individual and Group Observations of Thirty-nine Students</u>

	12	The shape of						
		the side plane						
		changes from						
		trapezoid to						
		triangle						
	13	The side view						
		is a trapezoid						
	14	The shape of						
		the water						
		surface						
		changes						
	15	In some						
		instances, the						
		base becomes						
		smaller						
Area	16	The total area						
		of the side						
		faces does not						
		change						
	17	The are of						
		water surface						
		changes						
	18	The area of						
		water surface						
		becomes larger						
	19	The area,						
		except that of						
		the water						
		surface does						
		not change						
	20	The total						
		surface area						
		changes						
	21	The area of the						
		base is smaller						
		than that of the						
		upper face						
		when tilted						
Volume	22	The volume						
		does not						
		change						
	23	When the						
		water forms						
		prism, the						
		volume equals						
		(base area) x						
		(height)						

Others	24	There is a fixed					
oulors	21	point when					
		viewed					
		horizontally					
	25	The weight of					
	25	the water does					
		not change					
	26	The angle	_				
	20	abangas					
	27	The sum of the	 		 		
	27	The sum of the					
		angles of the					
		side planes is					
		constant	_				
	28	The surface is					
		level					
	29	The form of					
		the water is a					
		quadrangular					
		prism					
	30	The form of					
		the water					
		changes from a					
		cuboid to a					
		triangles prism					
	31	The form of					İ.
		the water					
		changes					