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Abstract. We analytically study the existance of chaotic dynamics on Autoparametric
system with parametric excitation. The method of averaging is used to yield a set of au-
tonomous equation of the approximation to the response of the system. We use a global
perturbation method developed by Kovacic and Wiggins to analyze the parameter range
for wich a Shilnikov type Homoclinic orbit exists. This orbit gives rise to a well-described
chaotic dynamics.

1. Introduction

This paper contains a further analysis of system first presented in [1]. There we considered
an autoparametric system where the Oscillator is excited parametrically:

x′′ + k1x
′ + q2

1x + ap(τ)x + f(x, y) = 0

y′′ + k2y
′ + q2

2y + g(x, y) = 0
(1.1)

where f(x, y) = c1xy2 + d1x
3, g(x, y) = d2y

3 + c2x
2y, and p(τ) = cos 2τ . The natural

frequencies q1 and q2 are both close to 1, so there exist a 1:1 internal resonance as well as
1:2 resonance with the external excitation. The nonlinear terms can be chosen more general.
However, an averaging procedure will be used to study (1.1) and the indicated terms are the
only ones that give a contribution, therefore there is no loss of generality in the choice of
nonlinearity.

In [1] we studied the behavior of a stable periodic solution x(τ) of x′′+k1x
′+q2x+f(x, 0) =

0. Various types of bifurcation of this solution were analyzed. Also, numerical simulation
suggested the existence of non-trivial solutions which were either periodic, quasi-periodic or
chaotic.

The aim of this paper is to show the existence of these non-trivial solution in a more
rigorous, analytical way. To this end we combine the analysis of a codimension 2 bifurcation
with the application of a generalized Melnikov method to yield a full picture of the dynamics
of (1.1). The results of this theoretical analysis, in particular concerning the existence of
chaotic solutions, show a remarkable degree of agreement with the numerical results.

2. The averaged System in Action Angle Variables

Writing q2
1 = 1 + εσ1, q2

2 = 1 + εσ2, scaling ki = εk̃i, ci = εc̃i, di = εd̃i, i = 1, 2, a = εã,
and t = ετ . Transforming x = u1 cos τ + v1 sin τ , y = u2 cos τ + v2 sin τ , and performing
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2 Global Bifurcations and Chaotic Solutions of an Autoparametric System

an averaging procedure, then rescaling τ = ε
2 τ̃ , see [1] for details. In the sequel a different

formulation of (2.1) will often be used transformation to action-angle variables

ui = −
√

2Ricosθi and vi =
√

2Risinθi, i = 1, 2(2.1)

yields

R′

1 = −2k1R1 + c1R1R2 sin(2θ1 − 2θ2) + aR1 sin 2θ1

R1θ1
′ = σ1R1 +

1

2
aR1cos2θ1 + 2R2

1 + c1R1R2 +
1

2
c1R1R2 cos(2θ1 − 2θ2)

R′

2 = −2k2R2 − c2R1R2 sin(2θ1 − 2θ2)

R2θ2
′ = σ2R2 +

1

2
c2R1R2 cos(2θ1 − 2θ2) + 2R2

2 + c2R1R2

(2.2)

3. Analytical Study of Chaotic Solutions by Using a Generalized Melnikov

Method

By using a generalized version of Melnikov’s method, we show that for certain values of
the parameters, the averaged system (2.3) has a homoclinic orbit of Shilnikov-type. As is
well-known [2], the existence of a Shilnikov-orbit implies the existence of chaotic dynamics.
The method used here is based on Kovačič and Wiggins. To apply the method, a rescaling of
the parameters is needed which leads to a system where the unperturbed part is Hamiltonian
and integrable within the 4-dimensional phase-space. The unperturbed system possesses a 2-
dimensional invariant manifold M , with a 3-dimensional stable manifold. Both the invariant
manifold and its stable manifold survive when the perturbations are added. Within the
invariant manifold Mε we identify a fixed point pε. By using a Melnikov method, we can find
the range of parameters for which the 1-dimensional unstable manifold of pε intersects the
stable manifold of Mε. Under certain conditions, this yields a homoclinic orbit of Shilnikov-
type. We present the details below.

3.1. Transformation to Hamiltonian Coordinates. We first introduce the following
transformations:

q1 = 2θ1 − 2θ2, q2 = 2θ2, p1 = −c2R1,

p2 = p1 − c1R2, where c2 < 0 and c1 > 0.
(3.1)

Note that, because R2 ≥ 0, we are only interested in the area of phase-space where P2 ≤ P1.
In particular, the hyper-plane P2 = P1 corresponds to the invariant space R2 = 0.

After transforming system (2.2) using (3.1) and then rescaling the variables and parame-
ters by p1,2 → εP1,2, q1,2 → −2Q1,2, k1,2 → ε2k̄1,2, σ1,2 → εσ̄1,2, a → ε2ā, and
τ → 2ετ̄ , system (2.2) becomes
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P ′

1 =
∂Ho

∂Q1
+ ε

(

−4k̄1P1 +
∂H1

∂Q1

)

Q′

1 = −∂Ho

∂P1
− ε

∂H1

∂P1

P ′

2 = ε

(

∂H1

∂Q2
+ 2κP1 − 4k̄2P2

)

Q′

2 = −∂Ho

∂P2

(3.2)

where

Ho = σP1 + 2σ̄2P2 + c̄1P1P2 −
1

2
c̄3P

2
2 − P1(P2 − P1)(c̄2 + cos 2Q1)

H1 = āP1 cos 2(Q1 + Q2)
(3.3)

and σ = 2σ̄1 − 2σ̄2, c̄1 = 2
c1

− 2
c2

, c̄2 = 2− 2
c1

− 2
c2

, c̄3 = 4
c1

, and κ = 2k̄2 − 2k̄1. It is clear that

for k̄1 = k̄2 = 0, system (4.2) is in canonical form, with Hamiltonian H = Ho + εH. Note
that ∂H

∂Q2
= 0.

3.2. Analysis of the Unperturbed System. In this subsection we study the dynamic of
the unperturbed (ε = 0) system. It is given by

P ′

1 =2P1(P2 − P1) sin 2Q1

Q′

1 = − σ − c̄1P2 − (2P1 − P2)(c̄2 + cos 2Q1)

P ′

2 =0

Q′

2 = − 2σ̄2 − c̄1P1 + c̄3P2 + (c̄2 + cos 2Q1)P1

(3.4)

System (3.4) is integrable, since it possesses the independent integrals Ho and P2. In fact, it
can in principle be integrated because the equations for P1 and Q1 are decoupled from the
other two equations. We will first study the equations for P1 and Q1, taking P2 as a constant.

We are only interested in studying the dynamics of these equations in the range 0 < P2 ≤ P1

and 0 < Q1 < π, since the equations are π-periodic in Q1. One set of fixed points is given by
P1 = P2 and Q1 a solution of

(3.5) cos2Q1s = − 1

P2
(σ + c̄1P2 + c̄2P2)

This yields solution Q1s and π −Q1s, provided that 0 < P2 < P1. A simple stability analysis
shows that these points are of saddle type. Note that these points are connected through
a heteroclinic orbit on the invariant line P1 = P2. We also note that this invariant line
P1 = P2 corresponds, in the original coordinates, with the invariant space R2 = 0, i.e. y = 0.
Therefore, these two fixed points correspond to semi-trivial solutions, Another fixed point is

given by Q1 = π
2 and P1 = P̄1 = −σ+(c̄2−c̄1−1)P2

2(c̄2−1) . From the condition that P1 ≥ P2, it follows

that such a P̄1 only exists for P21 < P2 < P22, with P21 = −σ/(3− 4
c2

) and P22 = −σ/(1− 4
c2

).
This fixed point is a center-point, and in the original coordinates it represents a non-trivial
periodic solution.

The orbits in the (P1, Q1)-plane are the level curves of the unperturbed Hamiltonian Ho

restricted to the plane. The orbits through the saddle points (P1, Q1) = (P2, Q1s) and
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(P1, Q1) = (P2, π − Q1s) can be found by solving H◦(P1, Q1) − H◦(P2, Q1s) = 0 for P1.
We then have

π/20
Q
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P
1

P
2

πQ
1s

π−Q
1s

P
1

A’

A

Figure 1. The phase-portrait of the unperturbed system in the (P1, Q1)-
plane, for values c1 = 1, c2 = −1, σ̄1 = −8, σ̄2 = 5.3, and P2 = 4.

orbitA′ : P1 = P2

orbitA : P1 = − σ + c̄1P2

c̄2 + cos 2Q1

(3.6)

These expressions for the heteroclinic orbits will be used later, when we apply the Melnikov
method. The phase-portrait in the (P1, Q1)-plane is shown in Figure 1. Using Figure 1, we
can get an impression of the dynamics of the unperturbed system in the full, four-dimensional,
phase-space. Since the 2-dimensional phase-space for P1 and Q1 is qualitatively the same for
all P21 < P2 < P22 and the equation for Q2 is decoupled, we can picture the phase-space as
in Figure 2.

The sets

M1 = {(P1, Q1, P2, Q2)|P1 = P2, Q1 = Q1s, P21 < P2 < P22}
M2 = {(P1, Q1, P2, Q2)|P1 = P2, Q1 = π − Q1s, P21 < P2 < P22}

(3.7)

define a two dimensional invariant manifold M = M1 ∪ M2 for the unperturbed equation.
It is normally hyperbolic (see Wiggins[4]) which means that under linearized dynamics, the
rates of expansion and contraction transverse to M dominate those tangent to M .

The existence of the heteroclinic orbits joining M1 and M2 implies the nontranversal inter-
section of the three-dimensional stable manifold W s(M) and the three-dimensional unstable
manifold W u(M) along a three-dimensional heteroclinic manifold Γ (Figure 2), where

Γ ≡ W s(M) ∩ W u(M)

= {(P1, Q1, P2, Q2)|H◦(P1, Q1, P2) − H◦(P2, Q1s, P2) = 0}(3.8)

The trajectories in Γ approach a trajectory in M asymptotically as τ → ±∞. By using the
persistence theorem (see Fenichel [3]), we can show that M persists under small perturbations
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as a locally invariant manifold Mǫ with a boundary. Moreover, the manifolds W s(M) and
W u(M) also persist as a locally invariant manifold W s(Mǫ) and W u(Mǫ).
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Figure 2. The Unperturbed system and manifolds M in the (P1, Q1, P2)-space.

The dynamics of the unperturbed system restricted to M is given by

P ′

2 = 0

Q′

2 = −2σ̄1 − βP2
(3.9)

See Figure 3a. Because the equations are π-periodic in Q2, the phase-space is the cylinder
obtained by identifying the edges Q2 = 0 and Q2 = Π. The phase-space therefore consists of
a collection of invariant circles. However, Q′

2 = 0 for P2
r = c2σ̄1

2 . Therefore for P2
r = c2σ̄1

2
(the resonant value) we have a circle of fixed points.
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Figure 3. a. The dynamics of Unperturbed system and manifolds A in the
(Q2, P2)-plane. b. The perturbed system and manifolds Aε in the (Q2, P2)-
plane.

To study the dynamics on the perturbed invariant manifold Mε, we can use averaging over
Q2, as long as P2 is not close to the resonant value P2

r = c2σ̄1

2 . This yields the equation

P̄2
′

= ε(−4k̄1)P̄2, implying P̄2 → 0 as τ̄ → ∞. This means that all these orbits eventually
leave Mε. However, the behavior near P2 = P2

r is quite different.
To study the dynamics of the perturbed system restricted to Mε near the resonance P2 =

P2
r we will change variables.
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Let P2 = P2
r +

√
εP and τ =

√
ετ , we then have

P ′ = − 4k̄1P2
r − 2āP2

r sin 2(Q1s + Q2) +
√

ε(−4k̄1P − 2āP sin 2(Q1s + Q2))

+ O(ε)

Q′

2 = − βP + O(ε)

(3.10)

for ε = 0, the equation (3.10) is Hamiltonian, where the Hamiltonian is given by

(3.11) H̄ = −1

2
βP 2 +

∫

4k̄1P2
r + 2āP2

r sin 2(Q1s + Q2(τ))dτ

The fixed points are (P, Q2) = (0, Q2c) and (P, Q2) = (0, Q2s). We will denote these fixed
points as p◦ and q◦, respectively. In the range 0 < 2k̄1 < ā and 0 < Q1s < π, we have
−π < Q2 < −1

4π. In this range Q2c and Q2s are represented by

Q2c =
1

2
sin−1

[−2k̄1

ā

]

− Q1s and

Q2s = −π

2
− 1

2
sin−1

[−2k̄1

ā

]

− Q1s

(3.12)

Q
2

P
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Q
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Q
2c

q p

Q
2n

11

Figure 4. The homoclinic orbit of system () in the (P, Q2)-plane, for values
k̄1 = k̄2 = 1, ā = 2.1, c1 = 1, c2 = −1, σ̄1 = −8, σ̄2 = 5.3, and P2 = 4.

The fixed point p◦ is a center point and the fixed point q◦ is a saddle point. The fixed
point q◦ is connected to itself by a homoclinic orbit and p◦ is the only fixed point inside this
homoclinic orbit. The range Q2 in the homoclinic orbit is Q2s < Q2 < Q2n (see Figure 4),
where Q2n can be solved from

(3.13) H̄(0, Q2n) − H̄(0, Q2s) = 0.

The point of view of the dynamics on Mε, we are only interested in the dynamics in an
order

√
ε near the resonance P2 = P2

r. To emphasizes this fact, we denote the annulus
centered at P2 = P2

r as Aε. Since we will want to compare the dynamics in Aε with the
unperturbed dynamics in the same region on Mε, we define the unperturbed annulus as
A◦. By restricting the P2 values appropriately, we have the three dimensional stable and
unstable manifolds of Aε, denoted W s(Aε) and W u(Aε), respectively, are subset of W s(Mε)
and W u(Mε), respectively.
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When the perturbation terms of order
√

ε are taken into account, the perturbed pε identical
to p◦ and becomes sink due to O(

√
ε). Moreover, the homoclinic orbit breaks with a branch

of unstable manifold of qε falling into pε, see Figure 5 and 6. In Figure 6, the unperturbed
system has one-dimensional W u(p◦) lying in the three dimensional manifold W s(A◦). By
using the generalized Melnikov method, we can develop a measure of the distance between
W u(pε) and W s(Aε) and show that W u(pε) ⊂ W s(Aε) for the perturbed system shown in
Figure 5.
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Figure 5. The dynamics in A◦ and its associated manifolds
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Figure 6. The dynamics in Aǫ and its associated manifolds.

3.3. Melnikov Function. In calculating the Melnikov function it will be important to have
forms for P1, Q1 and Q2 as functions of time τ . We substitute equation (3.10) into equation
(3.5) and integrate. For orbit A, Q1(τ) can implicitly be written as

(3.14) tanh(eAτ) =
sin 2Q1s sin 2Q1(τ)

1 − cos 2Q1s cos 2Q1(τ)

where eA = −P2 sin 2Q1ssgn(sin 2Q1s), and the expressions for cos 2Q1(τ) is

cos 2Q1(τ) =
cos 2Q1s cosh(eAτ) − 1

cosh(eAτ) − cos 2Q1s

(3.15)
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Substituting equation (3.6) into (3.10), we have the explicit form for P1 as function of time
τ . The expression is

(3.16) P1(τ) = P2
cosh(eAτ) − cos 2Q1s

cosh(eAτ) + cos(fA)

where

(3.17) cos(fA) = −1 + c̄2 cos 2Q1s

c̄2 + cos 2Q1s

Finally, to calculate Q2 as function of time τ , we substitute equation (3.10) into (3.7), yield

(3.18) Q′

2 = cAP2 + c̄1(P2 − P1)

where cA = −2σ̄1

P2
+ c̄3 − 2c̄1. After substituting equation (3.16) and (3.17) into (3.18), we

thus have

(3.19) Q′

2 = cAP2 − c̄1P2
cos 2Q1s + cos(fA)

cosh(eAτ) + cos(fA)

On integrating equation (3.19) obtains

(3.20) Q2(τ) = cAP2τ − gA tan−1

[

tan

(

fA

2

)

tanh
(eAτ

2

)

]

where

(3.21) gA = 2c̄1
cos(fA) + cos 2Q1s

sin 2Q1s sin(fA)
sgn(2Q1s)

note that from equation (4.10), P1(τ) a constant for orbit A′.
By letting P2 = P2

r, we compute the phase shift ∆Q2 of orbits which are asymptotic to
points on the circle of fixed points as τ → ±∞. From equation (3.20), we have

(3.22) ∆Q2 = Q2(+∞) − Q2(−∞) = gAfAsgn(2Q1s)

We now consider system (3.2). By taking −Q2 instead of Q2 as the angle conjugate to
P2 or by interchanging P1 and P2 and taking the negative of the Hamiltonian, we can put
system (3.2) in the form of (1.1)ε in Wiggins [4]. Then we have the integrand of the Melnikov
function as

∂H◦

∂P1

∂H1

∂Q1
− ∂H◦

∂Q1

∂H1

∂P1
− 4k̄1P1

∂H◦

∂P1
+

(

∂H◦

∂P2
(P1, Q1, P2) −

∂H◦

∂P2
(P1, Q1s, P2)

) (

−∂H1

∂Q2
+ 2κP1 − 4k̄2P2

)(3.23)

This Melnikov function integrand can be simplified by using the chain rule gives

(3.24)
∂H◦

∂P1

∂H1

∂Q1
− ∂H◦

∂Q1

∂H1

∂P1
= −dH1

dτ
− ∂H1

∂Q2

∂H◦

∂P2

where we have used the fact that for ε = 0 then P ′

2 = 0, ∂H◦

∂P1
= −Q′

1,
∂H◦

∂P2
= −Q′

2, and
evaluated the integrand at P2 = P2

r, the Melnikov function thus simplifies to

(3.25) −dH1

dt
+ 4k̄1P1Q

′

1 + (−2κP1 + 4k̄2P2
r − 4āP1 sin 2(Q1 + Q2))Q

′

2

We now integrate (3.25) around the unperturbed heteroclinic orbit at P2 = P2
r that ap-

proaches p◦ asymptotically as τ → −∞.
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It is clear that the first term in (3.25) can be integrated to give

(3.26) −
∫ +∞

−∞

dH1

dτ
= −āP2

rcos2(Q1(τ) + Q2(τ))|+∞

−∞

The Melnikov function is evaluated on the orbit emanating from the center fixed point p◦,
at the resonance value (P = 0). Recalling that ∆Q2 = Q2(+∞) − Q2(−∞), and using
Q1(±∞) = ±sgn(eA), Q2(−∞) = p◦,
Q2(+∞) = ∆Q2 + p◦, and trigonometric identities allow us to simplify (3.26) to

−
∫ +∞

−∞

dH1

dτ
= − āP2

r(cos 2p◦[cos 2Q1s (cos 2∆Q2 − 1)

− sgn(eA) sin 2Q1s sin 2∆Q2] − sin 2p◦[cos 2Q1s sin 2∆Q2

+ sgn(eA) sin 2Q1s])

(3.27)

The second term in (3.25) can be integrated by using the relation in equation (3.10) to obtain

(3.28)

∫ +∞

−∞

4k̄1P1Q
′

1dτ = −8k̄1(σ + c̄1P2
r)

tan−1(
√

c̄2
2 − 1)√

c̄2
2 − 1

tan Q1ssgn(eA)

and the third term in (3.25) can be integrated as

∫ +∞

−∞

− 2κP1 + 4k̄2P2
r − 4āP1 sin 2(Q1 + Q2)Q

′

2dτ =

4k̄2P2
r∆Q2 + 2κ(σ + ¯c1P2

r)

∫

Q′

2dτ

c̄2 + cos 2Q1(τ)

− 4ā(σ + c̄1P2
r)

∫

sin 2(Q1(τ) + Q2(τ))

c̄2 + cos 2Q1(τ)
Q′

2dτ

(3.29)

From equations (3.24)- (3.29) the Melnikov function can be wrote down as

(3.30) M(µ) = M1(µ) + sinQ20(σ + c̄1P2
r)M2(µ)

where µ = (σ̄1, σ̄2, ā, Q20).
Solving the Melnikov function M(µ) = 0, we find the condition when a Silnikov type

heteroclinic cycle exists. Such a cycle implies the existence of chaotic dynamics.

4. Conclusion

We have studied global bifurcations an autoparametric system of the form (1.1) with the
conditions stated in [1]. There is explicit results of study of global bifurcation of the non-
trivial solution. We find the Melnikov function indicating that the heteroclinic connection
which exists , is not broken by perturbation. We also find the condition when a Silnikov type
heteroclinic cycle exists. That cycle implies the existence of chaotic dynamics.
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