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Abstract. The possibility of suppressing self-excited vibrations of mechanical systems using
parametric excitation is discussed. We consider a two-mass system of which the main mass is
excited by a flow-induced, self excited force. A single mass which acts as a dynamic absorber
is attached to the main mass and, by varying the stiffness between the main mass and the
absorber mass, represents a parametric excitation. It turns out that for certain parameter
ranges full vibration cancellation is possible. Using the averaging method the non-linear
system is investigated producing as non-trivial solutions stable periodic solutions. In the
case of a small absorber mass we have to carry out a second-order calculation.

1. Introduction

Suppressing flow-induced vibrations by using a conventional spring-mass absorber system
has often been investigated and applied in practice. It is also well-known that self-excited
vibrations can be suppressed by using different kinds of damping, see [Tondl (1991); Tondl,
Kotek, Kratochvil(2001)]. However, only little attention has been paid to vibration suppres-
sion by using interaction of different types of excitation.

In this paper we solve a two-mass system formulated by Tondl, see [Ecker and Tondl (2000)];
the model is described in section 2. We will use the averaging method [Sanders and Verhulst
(1985)]. The first order approximation is used to analyze the conditions for full vibration
suppression. It turns out that full vibration cancellation is possible in an open parameter set.
This is illustrated analytically. In sections 5 and 6 we study the stability and bifurcations of
the trivial solution. Finally, in section 7 we return to the realistic problem of a small absorber
mass. A second-order approximation has to be calculated in this case with as a result that,
although full vibration cancellation is impossible, a fairly large part of vibration quenching
can be achieved.

2. The Model

Consider a two-mass system consisting of a main mass m2 which is in flow-induced vibration
and an absorber mass m1 which is attached to the main mass by a spring-damper element,
see Figure 1. The elastic mounting k(t) of the absorber mass is a combination of a spring and
a device operating such that the stiffness k(t) is changed periodically. Damping is represented
by the linear viscous damper c1. The main mass m2 is supported by a spring with constant
stiffness k2; it has a linear viscous damper with damping parameter c2. In actual constructions
one usually has m1 < m2.
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2 Suppressing flow-induced vibration by parametric excitation

A flow-generated self-excited force is acting on the main mass m2 with critical flow velocity
Uc and a limited vibration amplitude in the over-critical region; as usual it is represented by
a Rayleigh force.

The displacements of mass m1 and mass m2 are denoted by the coordinates y1 and y2, re-
spectively. The variation of the stiffness of the absorber element is supposed to be a harmonic
function with a small amplitude.

This system is represented by the following nonlinear equations of motion

m1y
′′
1 + c1(y

′
1 − y′

2) + k1(1 + ε cos ωτ)(y1 − y2) = 0,

m2y
′′
2 − c1(y

′
1 − y′

2) − k1(1 + ε cos ωτ)(y1 − y2) + c2y
′
2 + k2y2 − b◦U

2(1 − γ◦y
′
2
2
)y′

2 = 0.
(2.1)

where ε is a small positive parameter, 0 < ε << 1. In the decoupled system, where we only
consider vibrations of the main mass m2, self-excited vibrations occur if c2 − b◦U

2 < 0.
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Figure 1. System consisting of a flow-excited main mass m2 and a vibration ab-

sorber m1 with time-dependent connecting stiffness k(t).

3. Transformation of the system to a standard form

Dimensionless coordinates xj can be defined with respect to a given reference value y◦:

xj =
yj

y◦

j = 1, 2. By introducing the characteristic parameters of the system ω̄2 = k1

m1

, ω◦
2 =

k2

m2

, η = ω
ω◦

, Q2 = ω̄2

ω◦
2 , and by using the time-transformation ω◦t = τ, the following dimen-

sionless form of system (2.1) is obtained

x′′
1 + κ1(x

′
1 − x′

2) + Q2(1 + ε cos ητ)(x1 − x2) = 0,

x′′
2 − Mκ1(x

′
1 − x′

2) − MQ2(1 + ε cos ητ)(x1 − x2) + κ2x
′
2 + x2 − βV 2(1 − γx′

2
2
)x′

2 = 0.
(3.1)

where κ1 = c1

m1ω◦

, κ2 = c2

m2ω◦

, β = b◦U◦

2

m2ω◦

, V 2 = U2

U◦

2 , γ = γ◦ω◦
2 , M = m1

m2

.
Parameter U◦ is a chosen reference value for the flow velocity. When U◦ reaches the critical

flow velocity Uc =
√

c2/b◦, the relative critical flow velocity is Vc = 1.
In order to transform the system into a standard form and to make the size of the parame-

ters more explicit, we scale κ1,2 = εκ̄1,2, and β = εβ̄ while assuming that the other parameters
are O(1) with respect to ε. However, in quite a number of applications the absorber mass
m1 will be small with respect to the main mass m2; we shall return to this case in section
9. If ε = 0, the linear parts of (3.1) now depend on the mass ratio M and the frequency
ratio Q. Note, that if ε > 0, three frequencies play a part. Using the linear transformation
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x1 = x̄1 + x̄2, x2 = a1x̄1 + a2x̄2. leads to the standard form

x̄′′
1 + Ω2

1x̄1 = − ε

a1 − a2
F1(x̄1, x̄

′
1, x̄2, x̄

′
2, ητ),

x̄′′
2 + Ω2

2x̄2 = − ε

a1 − a2
F2(x̄1, x̄

′
1, x̄2, x̄

′
2, ητ),

(3.2)

where the natural frequencies of the linearized system without damping and for ε = 0,

Ω1, Ω2 and a1,2 are depending on M and Q. Note that the functions F1 and F2 are de-
pending on the parametric excitation frequency η, and that the following conditions hold
Ω2 > Ω1, a1a2 = −M, 0 < a1 < 1, and a2 < −M .

4. The Normal Form by Averaging

We will use the method of averaging to study the system near the combination resonance
Ω2 − Ω1 = η◦. Transforming t → ητ and allowing detuning near η◦ by putting η = η◦ + εσ̄.
system (3.2) becomes to first order in ε

¨̄x1 + ω2
1 x̄1 = − ε

(a1 − a2)η2
◦
F̄1(µ, x̄1, ˙̄x1, x̄2, ˙̄x2, t),

¨̄x2 + ω2
2 x̄2 = − ε

(a1 − a2)η2
◦
F̄2(µ, x̄1, ˙̄x1, x̄2, ˙̄x2, t).

(4.1)

where ω1,2 =
Ω1,2

η◦

and µ = (Q12, Q21, θ11, θ22, B). Q12, Q21, θ11, θ22, and B are depending on

parameters. To study the behavior of the solutions, we transform x̄1 = u1 cos ω1t + v1 sin ω1t, ˙̄x1 =
−ω1u1 sin ω1t + ω1v1 cosω1t, x̄2 = u2 cos ω2t + v2 sin ω2t, ˙̄x2 = −ω2u2 sin ω2t + ω2v2 cosω2t.

This transformation is useful when studying the stability of the trivial solution of the system; stabil-
ity implies the possibility of vibration cancellation. After averaging over 2π and then rescaling time by
a factor ε

2(a1−a2)η2
◦

, we obtain the averaged normal form U̇ = G(µ,U) where U = (u1 u2 u3 u4)
T

and G = (G1 G2 G3 G4)
T .

5. Conditions for Vibration Cancellation:Linear Case

Systems involving interaction of self-excitation and parametric excitation have been studied in
[Tondl (1978); (1991);(1997);(1998)].

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1
M

I
I

II

II

III

IV

M*=0.6

Fr
eq

ue
nc

y 
R

at
io

 Q

Mass Ratio M

Q
1

Q
2

Figure 2. Boundaries of θ11 and θ22 in the (M,Q)-plane for ε = κ1 = β =

0.2, κ2 = 0.1, V =
√

2.1 and γ = 4. The curves Q1 and Q2 correspond with

θ11 = 0 and θ22 = 0, respectively. Region I, θ11 < 0 and θ22 > 0. Region II,

θ11 > 0 and θ22 < 0. Both θ11 and θ22 are positive in region III and they are

negative in region IV. On the right side of the line M ? = 0.6, θ11 + θ22 > 0 and

θ11 + θ22 < 0 on the left side.



4 Suppressing flow-induced vibration by parametric excitation

In the methods used there an implicit assumption on the magnitude of the parameters corresponds
with our assumptions in the preceding section; in section 8 this will change. Here we present an
independent analysis of the stability of the trivial solution based on the averaged normal.

From the linearization of averaged system at the trivial solution we have the characteristic equation
in the form λ4 + q1λ

3 + q2λ
2 + q3λ + q4 = 0, in which q1, q2, q3 and q4 depend on the parameters.

Note that we have Q12 < 0 and Q21 < 0. The linear damping coefficients θ11 and θ22 have a positive
sign if β̄V 2 − κ̄2 < 0; in this case there is no self-excitation. In the case of self-excitation β̄V 2 − κ̄2 > 0,
there are three conditions for θ11 and θ22: θ11 < 0 and θ22 > |θ11|, θ22 < 0 and θ11 > |θ22|, and both
of θ22 and θ11 are positive. The signs of the linear damping coefficients θ11 and θ22 are important
to determine conditions under which the vibrations can be suppressed. In Figure 2 we show the
boundaries when the θ11 and θ22 change sign.

Applying the Routh-Hurwitz criterion to get conditions when the real parts of the eigenvalues have
a negative sign leads to two conditions that must be met. The first condition of the Routh-Hurwitz
criterion gives θ11 + θ22 > 0. The second condition gives the relation p1σ̄

4 + p2σ̄
2 + p3 > 0 where pj ,

j = 1, 2, 3 depend on Q, M , if the other parameters are fixed. Solving at the boundary, we obtain the
interval of stability of the trivial solution is determined by η◦ + εσ̄2 < η < η◦ + εσ̄1.

6. Stability of The Trivial Solution

The parametric excitation is used in the case when self-excited vibrations occur. In the coupled
system the effectiveness depends on conditions of the parameter damping θ11 or θ22. When both of
θ11 and θ22 are positive, this represents the case where the dynamic absorber successfully cancels the
self-excited vibration. This happens in region III in Figure 2.
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Figure 3. Stability boundaries for fixed ε = κ1 = β = 0.2, κ2 = 0.1, V =
√

2.1,

γ = 4 and M = 0.2. (a) In the (σ̄, Q)-plane, (b) in the (η,Q)-plane. Inside the curves

in (a) and (b) the trivial solution is stable (full vibration suppression) and it is unstable

outside.

In Figure 2, within the small area IV to the left of line M = M ?, both of θ11 and θ22 are negative.
There we have that self-excitation is dominant and full vibration quenching is not possible at all. The
firts condition is satisfied on the right side of the line M = M ?.

Note that the region of full vibration suppression in Figure 3 depends on the mass ratio M . The
excitation frequency η has a wider range than the frequency ratio Q. Near the combination resonance
η = η◦ or σ = 0, the enlargement is increasing with higher values of M , but it does not increase
proportionally with η.

Figure 4 shows the influence of the amplitude ε of the parametric excitation on the suppressing area.
The parameter mainly influences the size of the area near the combination resonance η = Ω2 − Ω1.



S. Fatimah 5

The area of suppressing increases with increasing amplitude ε, indicating that ε is a very effective
parameter to obtain a large area of vibration suppression.

We point out that this study of stability of system (4.1) is for the realistic case of mass ratio M
smaller than 1. For a fixed value of M in this interval we obtain the shapes along the combination
resonance and the area as shown in Figure 3. In the numerical simulation shown in [Ecker and Tondl
(2000)], this area along the combination resonance is splitting up for small M . In section 7 we explain
this analytically by a second order approximation.
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Figure 4. Stability boundaries of the trivial solution in the (η,Q)-plane for fixed

values of the parameter and varying ε and M = 0.65.

7. The case M order ε

In applications we usually have to take the absorber mass (and so the mass ratio M) really small and
the question rises whether we can still suppress or at least significantly reduce self-excited vibrations
in this case. In [Ecker and Tondl (2000)] a numerical simulation is given which does not agree with the
harmonic balance result of the authors. We shall show that this is caused by the necessity to rescale
the parameter M with as a consequence that we have to take into account second order effects. We
rescale M = εM̄ . In the case the mass ratio M is small; to avoid linear resonance we omit the case
Q 6= 1 and the combination resonance takes place if η◦ = |Ω2 − Ω1|.
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Figure 5. The maximum amplitude Rx2
of system (3.1) for fixed Q = 1.105. The

minimum value can be reached at η = 0.77607 and Rx2
= 0.441621.

To get a standard form (3.2), we use transformation (3) where now
{

for 1 < Q

a1 = 0 and a2 = Q2−1
Q2

or

{

for 0 < Q < 1

a1 = Q2−1
Q2 and a2 = 0



6 Suppressing flow-induced vibration by parametric excitation

We find that to the lowest order in ε the trivial solution of the system (for both cases) is unstable.
Up to first order in ε, the system has a non-trivial fixed point corresponding with a periodic solution
of the original system. The characteristic equation of the linearization at that point is in the form
λ3 + pλ2 + qλ + r = 0. We find that all the coefficients of the equation are positive and pq − r > 0,so
that the fixed point is stable. Adding the second order ε terms, the fixed point of system up to the
lowest order of ε is also stable. The amplitude of variable x2 of system (3.1). This amplitude will

reach the minimum value at σ̄i = 1
3

(±3γ1−
√

3κ̄1η◦)
2(1−Q) . We show that the minimum value at η = 0.77607

is 0.441621 for fixed Q = 1.105, see Figure 5.

8. Conclusion

We have studied system (4.1), modeling flow-induced vibrations, by using the averaging method.
There are two conditions needed for suppressing self excited vibrations. The first condition evaluates
that the sum of the negative and the positive linear damping components determine the stability of
certain modes and must be positive. The second condition is related to the parametric excitation
frequency and determines, whether full quenching can be achieved or not in a certain interval. The
presented results also demonstrate that a dynamic absorber with parametric excitation is capable of
enlarging the range of full vibration suppression near the combination resonance frequency.

For applications the case of a small absorber mass (small M) is important. If M is of order ε the
absorber influences the vibration in second order approximation. We find the areas where the vibration
is decreased. We can also calculate the minimum value that can be reached by the maximum amplitude
of system (3.1) which shows that a large amount of quenching is still possible.

9. Acknowledgments

The authors wish to thank Prof. A. Tondl for formulating the problem. This work is part of Ph.D
thesis on Bifurcations in dynamical systems with parametric excitation.

References

[Tondl, A. (1959)] . The Method for Determination of Instability Intervals of Quasi-harmonic (parametric)
System (in Czech). Aplikace matematiky, 4:278-289.

[Tondl, A.(1978)] . On the Interaction between Self-excited and Parametric Vibrations. Monographs

and Memoranda,25, National Research Institute for Machine Design, Prague.
[Sanders, J.A., and Verhulst, F. (1985)] . Averaging Methods in Nonlinear Dynamical Systems, Appl.math.

Sciences 59, Springer-Verlag, New York.
[Tondl, A.(1991)] , Quenching of Self-excited Vibrations, Elsevier, Prague.
[Tondl, A. (1997)] . To the interaction of different types of excitations. In Proc.of Sem. Interactions and Feed-

back 97, Prague, 25-26: 111-118.
[Tondl, A. (1998)] . To the problem of quenching self-excited vibrations. Acta Technica CSAV, 43:109-116.
[Ecker, H., and Tondl, A.(2000)] . Suppression of flow-induced vibrations by a dynamic absorber with para-

metric excitation. Proc. of 7th International Conference on Flow-Induced Vibrations FIV2000, Lucerne,
Switzerland.

[Tondl, A., Kotek, V., and Kratochvil, C.(2001)] . Vibration Quenching of Pendulum Type Systems by means

of Absorber. CERM akademicke, Czech Republic.
[Fatimah, S. (2002)] . Bifurcations in dynamical systems with parametric excitation. Ph.D Thesis, Utrecht

University.


