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In model 1 [1], we consider a three-mass system consisting of a central mass and two
external masses . The ends of the external masses are elastically mounted by using springs
of variable stiffness. The scheme of this model is shown in Figure 1. The central mass m
and the external masses m1 and m2 represent reduced concentrated masses of body elements
while the connecting springs simulate their elasticity. The springs have constant stiffness k.
The linear viscous damping of the external masses m1 and m2 have coefficient bo, while the
variable stiffness is periodically varying in time as ko(1+ε cosωt). The central mass m is self-
excited by flow with a negative linear damping coefficient −b and damped by the non-linear
speed-dependent damping with coefficient c. The deflections from equilibrium positions are
yj (j = 1, 2, 3).

In model 2, the system also consists of a central mass and two external masses, see Figure 2.
The coordinates of massesmi, i = 1, 2, 3 are denoted by yi. The central mass and the external
masses are connected by springs with the same constant stiffness k. The flow-generated self-
excited force is acting on the external masses m1 and m2; it is represented by Rayleigh force
in the form bU(1 − γoẏ

2
i )ẏi, i = 1, 3, where b and γo are positive coefficients and U is the

flow velocity. The linear viscous damping of the central mass m has coefficient bo, while the
variable stiffness is periodically varying in time as ko(1 + ε cosωt).

In Figure 3, we consider a three mass system of model 3 where one of the ends of the
external masses is mounted by using a spring of variable stiffness. A flow induced-vibration
is acting on the external mass m1 and the central mass m with the negative linear damping
−b1 and −b2, respectively. The connecting springs have the same constant stiffness k. The
external mass m2 is supported by a spring with constant stiffness ko and a linear viscous
damper with damping parameter bo.

The considered system of model 1 is governed by the following differential equations:

m1ÿ1 + boẏ1 + ko(1 + ε cosωt)y1 + k(y1 − y2) = 0

mÿ2 − bU2(1− cẏ22)ẏ2 + 2ky2 − k(y1 + y3) = 0

m2ÿ3 + boẏ3 + ko(1 + ε cosωt)y3 + k(y3 − y2) = 0

(1)
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The system of model 2 is governed by the following differential equations:

m1ÿ1 + k(2y1 − y2)− bU2(1− γoẏ21)ẏ1 = 0

mÿ2 + k(2y2 − (y1 + y3)) + ko(1 + ε cosωt)y2 + boẏ2 = 0

m2ÿ3 + k(2y3 − y2)− bU2(1− γ◦ẏ23)ẏ3 =
(2)

The system of model 3 is governed by the following differential equations:

m1ÿ1 + k(y1 − y2)− b1(1− γoẏ21)ẏ1 = 0

m2ÿ2 + k(y1 − y2) + k2(y2 + y3)− b2(1− γoẏ22)ẏ2 + boẏ2 = 0

m3ÿ3 − k(y2 − y3) + ko(1 + ε cosωt)y3 = 0

(3)
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Figure 1. Model 1, the schematic representation of the three-mass chain system.
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Figure 2. Model 2, the schematic representation of the three-mass chain system.
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Figure 3. Model 3, the schematic representation of the three-mass chain system.
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1. Analysis of Model 1

Tondl and Nabergoj [2] have been studied the case when m1 = m2 = mo. Using the time

transformation τ = ωot, where ωo =
√

2k/m and the linear transformation

y1 = x1 + x2 + x3

y2 = a1x1 + a2x2

y3 = x1 + x2 − x3
(4)

the system (1) can be transformed to two coupled quasi-normal Mathieu equations and one
uncoupled Mathieu equation in the form

x′′1 +Ω21x1 + εf1(µ1, cos ητ, x1, x
′

1, x2, x
′

2, x3, x
′

3) = 0

x′′2 +Ω22x2 + εf2(µ2, cos ητ, x1, x
′

1, x2, x
′

2, x3, x
′

3) = 0

x′′3 +Ω23x3 + εf3(cos ητ, x3, x
′

3) = 0

(5)

where the normal-mode frequencies depend on the ratio between the masses mo and m. The
parameters µ1, µ2 depend on θ11, Q12 and θ22, Q21, respectively, where θ11, θ22 are the
damping coefficients, and Q12, Q21 are the coefficients of the parametric term. The analysis
of the linear case of system (5) shows that there are two conditions in order to obtain an
interval of the frequency of parametric excitation η, where the trivial solution is stable. These
conditions are found when the combination resonance η = Ω2 − Ω1 is considered.

The first condition is

(6) θ11 + θ22 > 0.

The second condition for the stability interval boundaries is

(7) ηo − σ < η < ηo + σ, ηo = Ω2 − Ω1

where

(8) σ = ε
θ11 + θ22
√

|θ11θ22|

√

−Q12Q21
16Ω1Ω2

− θ11θ22

Inside the interval the trivial solution is stable and it is unstable outside. For a more detailed
study see Tondl and Nabergoj [2].
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2. Analysis of Model 2

We study system (2) for the case m1 = m2 = m. Using the time transformation τ = ωot

with ωo =
√

2k/m, system (2) becomes

y′′1 + y1 −
1

2
y2 − εβV 2(1− γy′1

2
)y′1 = 0

y′′2 + y2 −
1

2
(y1 + y3) + q2(1 + ε cos ητ)y2 + εµy′2 = 0

y′′3 + y3 −
1

2
y2 − εβV 2(1− γy′3

2
)y′3 = 0

(9)

where

(10) εβ =
b/m

ωo
, η =

ω

ωo
, q2 =

ko/m

ω2o
U2, εµ =

bo/m

ωo
, γ = γoω

2
o , and V =

U

Uo

System (9) can be transformed into a standard form (11) using the linear transformation (4).

x′′1 +Ω21x1 + εf1(α1, cos ητ,x) = 0

x′′2 +Ω22x2 + εf2(α2, cos ητ,x) = 0

x′′3 + x3 + εf3(θ31,x) = 0

(11)

where

x = (xi, i = 1, 2, 3), αi = (θij , Qij ; i = 1, 2, j = 1, 2).

The xi, i = 1, 2, 3 are the normal coordinates corresponding to free vibrations of the system.
The normal-mode frequencies Ω1,2 and the constant multipliers a1,2 are given by the relations:

Ω1,2 =
1

2
(q2 + 2)∓ 1

2

√

q4 + 2,

a1,2 = −q2 ±
√

q4 + 2,

(12)

where q 6= 0 and q 6= 1. We note that Ω2 > Ω1 > 0, a1 > 0, a2 < 0 and

fi =
1

2(a1 − a2)
(θi1x

′

1 + θi2x
′

2 + (Qi1x1 +Qi2x2) cos ητ

∓ 2a2,1βV
2γ(3(x′1 + x′2)

2x′3 + (x′1 + x′2)
3)), i = 1, 2.

f3 =
1

2(a1 − a2)
(θ31x

′

3 + 4(a1 − a2)βV 2γ(x′3
3
+ x′3(x

′

1 + x′2)
2)

(13)

We note that system (13) is an Autoparametric system where x3 = 0 corresponds to the
semi-trivial solution of the system. Next, we use the parameters θ11, θ22, Q12, and Q21,
where

θ11 = 2(a1µ+ a2βV
2), θ22 = −2(a2µ+ a1βV

2)

θ31 = −2(a1 − a2)βV 2, Q12 = 2q2a2, Q21 = −2q2a1
(14)
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2.1. The Normal Form by Averaging. We note that the parametric excitation terms
only occur in the normal coordinates x1, x2. There are three natural frequencies of system
(11), i.e, Ω1, Ω2, and Ω3 = 1. Due to occurrence of parametric resonance and self-excitation
of system (11), we consider the external resonance η = Ω2 − Ω1 and the internal resonance
Ω2 − Ω3 − 2Ω1 = 0. Transforming t→ ητ and allowing detuning near η◦ by putting

(15) η = ηo + εσ̄, ηo = Ω2 − Ω1

we then transform system (11) by using Lagrange transformation,

xi = ui cosωit+ vi sinωit,

ẋ1 = −ωiui sinωit+ ωivi cosωit,
(16)

for i = 1, 2, 3 and ωi =
Ωi

η
. We use again the dot to indicate derivation with respect to the

re-scaled time. After averaging over 2π and then rescaling time through ε

2(a1−a2)η2
◦

, the first

order in ε of the averaged system is of the form;

(17) U̇ = AU + F(U)

where U is a vector (ui, vi, i = 1, 2, 3) and F is a vector function (fi, i = 1..6). The function
F only contains a cubic nonlinearity. The constant 6× 6-matrix A is in the form

(18) A =





A11 A12 0
A21 A22 0
0 0 A33





where Aij , i, j = 1, 2, ∅ and A33 are 2 × 2-matrix. System (17) can be reduced to the
five-dimension system by transforming the system using the following transformation,

ui = −Ri cosψi, and vi = Ri sinψi, i = 1, 2, 3.(19)

This transformation is useful for studying the semitrivial solution (x1, x2, 0) of system (12)
when x1 6= 0, x2 6= 0.

2.2. The Semitrivial solution. Consider λi, i = 1..6 which are the eigenvalues of matrix
A. We find that the real parts of λ5 and λ6 of the trivial solution are positive. Then, the
trivial solution of system (17) is always unstable. Let (x10, x20, 0) be a semitrivial solution
of system (17), where x10, x20 correspond with the non-trivial solutions R10, R20, and Ψ0 of
the following system
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Figure 4. The parameter diagram in the (β, µ)-plane for fixed q = 0.85,
V =

√
2, γ = 1, and ε = 0.1 for nontrivial fixed points of system (20). We find

that there is no fixed point in region I. One fixed point R01 exists in region
II. There are two fixed points R01 and R02 in region III. The line β = 0.04 is
used in the numerical example in Figure 5.

Ṙ1 = −θ11ηoR1 +
1

2

Q12
ω1

R2 sin(Ψ) +
3

2
a2αη

3
oR1(

1

2
ω21R

2
1 + ω22R

2
2)

Ṙ2 = −θ22η◦R2 −
1

2

Q21
ω2

R1 sinΨ−
3

2
a1αη

3
oR2(ω

2
1R

2
1 +

1

2
ω22R

2
2)

Ψ̇ = 2(a1 − a2)η◦σ̄ +
1

2
(
Q21
ω2

R1
R2
− Q12

ω1

R2
R1

) cosΨ.

(20)

When we take Ṙ1 = 0, Ṙ2 = 0, and Ψ̇ = 0, we obtain fixed points of system (20). They
correspond with periodic solutions of system (17).

The fixed points of system (20) are obtained by intersecting z1 and z2, where z1 ∩ z2 = ∅
for σ̄2 < σ̄ < σ̄1 and σ̄2 < 0 and σ̄1 > 0. The explicit expression for σ̄i (i = 1, 2) can be found
from equation (??).

Figure 5 shows the existence of the fixed point R0 when the parameter µ is varied along line
β = 0.04. There is no fixed point of system (20) for µ > 0.10736. The fixed point R+

01
exists

in the interval 0.05987 < µ < 0.10736. There are two fixed points R+
01

and R−

02
in the interval

0.02219 < µ < 0.05987. Two fixed points R−

01
and R02

− exist for 0 < µ < 0.02219. The
R+

0
and R−

0
show that the fixed point R0 is attracting and it is non attracting, respectively,
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Figure 5. The existence of the fixed point R0 of system (17), for fixed
q = 0.85, V =

√
2, γ = 1, ε = 0.1, and β = 0.04, (a) in the (µ,R1)-plane and

(b) in the (µ,R2)-plane. There is no fixed point for µ > 0.10736. There is one
solution R+

01
for 0.05987 < µ < 0.10736. There are two solutions R+

01
and R−

02

in the interval 0.02219 < µ < 0.05987. Two solutions R−

01
and R02

− exist for
0 < µ < 0.02219. The solid curve shows that the solution R0 is attracting in
the (R1, R2)-plane. The dashed curve shows that it is non attracting.

in the (R1, R2)-plane. The solid curve shows that the fixed point R0 is attracting in the
(R1, R2)-plane. The dashed curve shows that it is non attracting. We note that the fixed
point (R0,0) is always unstable in the full system.

In a further study one has to analyze the behavior of this unstable semitrivial solution
(R0,0) in the full system.


