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Abstract. Let � be a totally ordered abelian group and I an order ideal in �.
We prove a theorem which relates the structure of the Toeplitz algebra T (�) to the
structure of the Toeplitz algebras T (I) and T (�/I). We then describe the primitive
ideal space of the Toeplitz algebra T (�) when the set �(�) of order ideals in � is
well-ordered, and use this together with our structure theorem to deduce information
about the ideal structure of T (�) when 0 → I → � → �/I → 0 is a non-trivial group
extension.

2000 Mathematics Subject Classification. 46L55.

Introduction. Let � be a totally ordered abelian group with positive cone �+, and
denote by {ex : x ∈ �+} the usual basis for the Hilbert space �2(�+). For each x ∈ �+,
there is an isometry Tx on �2(�+) such that Txey = ex+y for all y ∈ �+.The Toeplitz
algebra of � is the C∗-subalgebra T (�) of B(�2(�+)) generated by the isometries
{Tx : x ∈ �+}. These Toeplitz algebras include as special cases the algebras studied by
Coburn [7] and Douglas [8], and generalisations to various classes of partially ordered
groups have attracted a great deal of attention in recent years (see [12, 13, 10, 11], for
example).

In [4], we considered the problem of describing the ideal structure of T (�), and
found that a crucial ingredient is the set �(�) of order ideals in �, which is itself totally
ordered under inclusion. We showed that the primitive ideals of T (�) are parametrised
by the disjoint union X(�) := ⊔{Î : I ∈ �(�)} of the duals of the discrete abelian

This research was supported by the Australian Research Council and URGE (the Indonesian Research
Fund for Doctoral Sandwich Programs). The first author is an associate of the Abdus Salam International
Center for Theoretical Physics in Trieste, Italy. Some results in this paper are from the third author’s PhD
thesis (Institut Teknologi Bandung, Indonesia, 2005).



82 S. ADJI, I. RAEBURN AND R. ROSJANUARDI

groups I [4, Theorem 3.1]. We then sought to describe the topology on X(�) which
corresponds to the hull-kernel topology on the primitive ideal space PrimT (�).

When �(�) is order isomorphic to a subset of � ∪ {∞} (for example, if �(�)
is finite or � is an anti-lexicographic direct sum over �), the appropriate topology
on X(�) is what we shall call here the upwards-looking topology: the closure of a
subset F of X(�) consists of the characters γ ∈ Ĵ with the property that, for every
open neighbourhood N of γ ∈ Ĵ, there exist I ∈ �(�) and χ ∈ N such that I ⊂ J and
(I, χ |I ) belongs to F . This is proved in [4, Proposition 4.7]. Even though we know by
example that the upwards-looking topology is not the correct topology for every � (see
[4, Example 4.10]), it seems useful to identify the groups � for which it is the correct
topology, and we do this here.

We begin with a short section in which we set up notation, recall the basic properties
of Toeplitz algebras, and describe the parametrisation of PrimT (�) found in [4, §3]. In
§2, we prove a new version of the structure theorem for the Toeplitz algebras of group
extensions 0 → I → � → �/I → 0 in which I is an order ideal. This theorem extends
a result of Adji [2] which identifies a certain quotient of T (�) as an induced algebra
with fibre T (�/I). Here we show also that the kernel of the quotient map onto the
induced algebra is naturally Morita equivalent to the commutator ideal in the Toeplitz
algebra T (I).

Our main theorem, which is the subject of §3, says that PrimT (�) is homeomorphic
to X(�) with the upwards-looking topology if and only if the totally ordered set �(�)
is well-ordered in the sense that every non-empty subset has a least element. Our main
tools are the structure theorem proved in §2, and a new general result on the upwards-
looking topology (Proposition 3.3). The proof of Proposition 3.3 uses classical Toeplitz
operators as well as the universal property of T (�) which was the main tool in [4]. The
last section combines the results of the previous sections to see what can be said about
PrimT (�) when parts of �(�) are well-ordered.

1. Toeplitz algebras. Let � be a totally ordered abelian group with positive cone
�+ = {x ∈ � : x ≥ 0}. We write ex for the characteristic function of the singleton set
{x}, so that {ex : x ∈ �+} is the usual orthonormal basis for �2(�+). For x ∈ �+, we
denote by Tx the isometric linear operator on �2(�+) which satisfies Tx(ey) = ex+y for
every y ∈ �+; when there is more than one group around, we write T�

x for emphasis.
The Toeplitz algebra of � is the C∗-subalgebra T (�) of B(�2(�+)) generated by {Tx :
x ∈ �+}.

It is well-known that T (�) acts irreducibly on �2(�+), and this is proved for much
more general � in [12, Theorem 3.13]. Perhaps it is worth pointing out that this is easy
to see when � is totally ordered.

LEMMA 1.1. The Toeplitz algebra T (�) of a totally ordered abelian group � acts
irreducibly on �2(�+).

Proof. Suppose that P is a projection in T (�)′ and x ∈ �+. For every other y ∈ �+,
we have x < y or y < x. If x < y, then

(Pex | ey) = (Pex | Tye0) = (T∗
y Pex | e0) = (PT∗

y ex | e0) = 0;
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if x > y, then (Pex | ey) = (Pey | ex) is similarly 0. So Pex ⊥ ey for all y �= x, and Pex is
a multiple λxex of ex. But

λx = (Pex | ex) = (Pe0 | T∗
x ex) = (Pe0 | e0),

so λx = λ0 for all x. Thus P = λ01, and since P is a projection, P is 0 or 1. �
The map T : x �→ Tx is a semigroup homomorphism from �+ to the semigroup

IsomT (�) := {S ∈ T (�) : S∗S = 1}. A theorem of Murphy ([12, Theorem 2.9], see
also [3]), which generalises earlier results of Coburn [7] and Douglas [8], implies that
T : �+ → IsomT (�) is universal for isometric representations: for every isometric
representation V of �+ in a C∗-algebra B, there is a homomorphism ρV : T (�) → B
such that ρV (Tx) = Vx for x ∈ �+. Murphy’s theorem also implies that ρV is faithful if
V satisfies VxV∗

x �= 1 for x �= 0. From the universal property of T : �+ → IsomT (�),
it follows that there is a continuous action α = α� of the compact dual group �̂ by
automorphisms of T (�) such that αγ (Tx) = γ (x)Tx for x ∈ �+.

An order ideal in � is a subgroup I such that 0 ≤ x ≤ y and y ∈ I imply x ∈ I . Both
I and the quotient �/I are then totally ordered with I+ = I ∩ �+ and (�/I)+ = {x + I :
x ∈ �+}. Clifford showed in [6] that the group extension 0 → I → � → �/I → 0 does
not always split. We denote by �(�) the set of order ideals in �. Because � is totally
ordered, the set �(�) is itself totally ordered by inclusion. As a point of notation, we
write I ⊂ J to include the possibility that I = J, and write I � J when we mean the
inclusion to be strict.

For every order ideal I , the map x �→ T�/I
x+I is an isometric representation of �,

and hence the universal property of T : �+ → IsomT (�) gives a homomorphism
QI : T (�) → T (�/I) such that QI (Tx) = T�/I

x+I for x ∈ �+; QI is surjective because its
range is a C∗-algebra containing all the generators of T (�/I). For ν ∈ �̂, Lemma 1.1
implies that the composition QI ◦ α−1

ν is an irreducible representation of T (�). In [4,
§3] we showed that ker QI ◦ α−1

ν depends only on ν|I , and that every primitive ideal of
T (�) has this form. So if X(�) denotes the disjoint union

⊔{Î : I ∈ �(�)}, the map
L : X(�) → PrimT (�) defined by

L(I, γ ) = ker QI ◦ α−1
ν where ν ∈ �̂/satisfies ν|I = γ

is a bijection [4, Theorem 3.1]. Our main interest is in determining the topology on
X(�) for which L is a homeomorphism.

2. Adji’s structure theorem. Suppose � is a totally ordered abelian group, and I
is an order ideal in �. Our structure theorem describes the relationships between the
Toeplitz algebras T (I), T (�), and T (�/I).

We have already observed that the universal property ofT (�) gives a surjection QI :
T (�) → T (�/I) such that QI (Tx) = T�/I

x+I for x ∈ �+. Applying the universal property
of T (I) to the restriction of T� to I+ gives a homomorphism ιI : T (I) → T (�) such
that ιI (TI

x) = T�
x for x ∈ I+. Since every T�

x is non-unitary, Murphy’s theorem implies
that ιI is injective.

The structure theorem in [2] identifies a quotient of T (�) as an induced C∗-algebra.
In general, if G is a compact group and α : H → Aut A is an action of a closed subgroup
H on a C∗-algebra, the induced C∗-algebra IndG

H(A, α) is the subalgebra of C(G, A)
consisting of the functions f satisfying f (gh) = α−1

h (f (g)) for all g ∈ G and h ∈ H.
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These C∗-algebras are discussed in [14, §6.3]. The induced algebra in our theorem is
that associated to the dual action α�/I of I⊥ = (�/I)∧ on T (�/I).

THEOREM 2.1. Let � be a totally ordered abelian group and I an order ideal in �.
Then the ideal C(�, I) in T (�) generated by {1 − TxT∗

x : x ∈ I+} is Morita equivalent to
the commutator ideal C(I) in T (I). If we define φI : T (�) → C(�̂, T (�/I)) by

φI (a)(γ ) = QI ◦ α−1
γ (a),

then φI (a) belongs to the induced algebra Ind�̂
I⊥ (T (�/I), α�/I ), and the following is an

exact squence of C∗-algebras:

0 → C(�, I) −→ T (�)
φI−→ Ind�̂

I⊥ (T (�/I), α�/I ) −→ 0. (2.1)

This theorem is an improvement of Theorem 3.1 of [2]: the extra ingredient is the
Morita equivalence of C(�, I) with C(I). Before proving this extra assertion, we give a
more direct proof of [2, Theorem 3.1]; the original proof relied on some general results
about semigroup crossed products [1] and a characterisation of induced C∗-algebras
due to Echterhoff [9].

Proof of the exactness in Theorem 2.1. When χ ∈ I⊥ = (�/I)∧, we can check on
generators that QI ◦ αχ = α

�/I
χ ◦ QI , and then a straightforward calculation shows

that φI (a) belongs to Ind(T (�/I), α�/I ). Further calculations show that φI is a
homomorphism of C∗-algebras.

To see that φI is surjective, we make two observations. First, we note that, for
each fixed γ ∈ �̂, the set {φI (a)(γ ) : a ∈ T (�)} is all of T (�/I). Second, we note
that for x ∈ I+, φI (Tx) is the function εx : γ → γ (x)1T (�/I), which is constant on
I⊥-orbits; these functions {εx : x ∈ I+} generate the C∗-subalgebra C(�̂/I⊥) ∼= C(Î)
of Ind(T (�/I), α�/I ), and hence the range of φI contains this C∗-algebra. Combining
these two observations with a partition-of-unity argument on �̂/I⊥ (as in, for example,
the lemma on page 704 of [9]) shows that the range of φI is dense in Ind(T (�/I), α�/I ).
Since the range of φI is a C∗-algebra, this implies that φI is surjective.

To see that (2.1) is exact we need to prove that ker φI = C(�, I). Since QI (Tx) =
1T (�/I) for every x ∈ I+, each generator 1 − TxT∗

x of C(�, I) belongs to ker φI , and hence
C(�, I) ⊂ ker φI . Since every ideal is the intersection of the primitive ideals containing it,
to prove that ker φI ⊂ C(�, I) it suffices to prove that every irreducible representation π

of T (�) with C(�, I) ⊂ ker π factors through φI . We know from Proposition 6.16 of [14]
that every irreducible representation of IndT (�/I) has the form M(γ, ρ) : f �→ ρ(f (γ ))
for some γ ∈ �̂ and some irreducible representation ρ of T (�/I). So we suppose that
π is an irreducible representation of T (�) with C(�, I) ⊂ ker π , and look for a suitable
pair (γ, ρ).

Since π (1 − TxT∗
x ) = 0 for x ∈ I+, the map π ◦ T is an isometric representation

of �+ which is unitary on I+. Since � is abelian, the operators in the range of π ◦ T
commute; when x ∈ I+, so that π (Tx) is a unitary operator, it follows that π (Tx) also
commutes with every operator of the form π (Ty)∗. Thus the restriction of π ◦ T to I+

has range in π (T (�))′ = �1, and there is a character χ of I such that π (Tx) = χ (x)1
for all x ∈ I+. We take γ to be any character of � such that γ |I = χ .

To construct ρ, we consider the isometric representation U : x �→ γ (x)π (Tx) of
�+, which satisfies Ux = 1 for x ∈ I+ because γ |I = χ . We claim that U is also constant
on I cosets. To see this, suppose x, y ∈ �+ satisfy x + I = y + I . Then x − y ∈ I , and
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since � is totally ordered, we have either x − y ≥ 0 or y − x ≥ 0. If y − x ≥ 0, then
Uy = Ux+(y−x) = UxUy−x = Ux, and similarly if x − y ≥ 0. Thus Ux = Uy, as claimed.
We deduce that there is an isometric representation W of �/I such that Wx+I = Ux,
and we take for ρ the representation ρW of T (�/I) such that ρW (T�/I

x+I ) = Wx+I .
To check that π = M(γ, ρ) ◦ φI , we let x ∈ �+ and compute:

M(γ, ρ) ◦ φI (Tx) = ρ(QI ((αγ )−1(Tx))) = γ (x)ρ
(
T�/I

x+I

) = γ (x)Ux = π (Tx).

Thus π factors through φI , as required, and we have proved exactness of (2.1). �
We still have to prove the Morita equivalence of C(�, I) and C(I). For this we

use the following general lemma which is surely part of the folklore. We adopt the
convention that if Y and Z are subspaces of a C∗-algebra, then YZ denotes the linear
span of the products {yz : y ∈ Y, z ∈ Z}.

LEMMA 2.2. Suppose that D is a C∗-algebra, E is a C∗-subalgebra of D, and X is a
closed vector subspace of D which contains E and satisfies

EX ⊂ X, XD ⊂ X, XX∗ ⊂ E, and X∗X is dense in D. (2.2)

Then X is an E–D imprimitivity bimodule with

e · x := ex, x · d := xd, E〈x, y〉 := xy∗, and 〈x, y〉D := x∗y. (2.3)

The Rieffel correspondence associated to this bimodule takes an ideal J in D to the ideal
J ∩ E in E.

Proof. It follows from the hypotheses and the usual algebraic properties of a C∗-
algebra that X is an E–D bimodule, that the given formulas define C∗-algebra-valued
inner products on X , and that the two inner products are compatible in the required
sense (that is, they satisfy properties (b) and (c) of [14, Definition 3.1]). Since

‖x‖2
D = ‖〈x, x〉D‖ = ‖x∗x‖ = ‖x‖2,

the norm induced by these inner products coincides with the norm coming from D,
and X is complete in this norm. Since every C∗-algebra satisfies EE∗ = E and E ⊂ X ,
X is full as a left Hilbert E-module; the density of X∗X in D implies that it is full as a
right-Hilbert D-module. Thus E is an E–D imprimitivity bimodule with the operations
(2.3).

If J is an ideal in D, the corresponding ideal X-Ind J in E is by definition

X-Ind J = span {E〈x j, y〉 : x, y ∈ X, j ∈ J} = span {x j y∗ : x, y ∈ X, j ∈ J}

(see [14, §3.3]). This is clearly contained in J ∩ E. On the other hand, if j ∈ J ∩ E, then
we can approximate j by elements of the form b jc∗ with b, c ∈ E, and b jc∗ belongs to
X-Ind J because E ⊂ X . �

We aim to apply Lemma 2.2 with D = C(�, I) and E = ιI (C(I)). The description
of C(�, I) in the next lemma will suggest a natural candidate for X , and will also allow
us to verify the properties (2.2) by direct calculations. To simplify the formulas in these
calculations, we write 1x for TxT∗

x , and recall that {1x : x ∈ �+} is a commuting family
of projections satisfying 1x1y = 1max{x,y}. The key ingredient in the calculations is the
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following formula for a, u ∈ �+:

T∗
a (1 − 1u) =

{
(1 − 1u−a)T∗

a if a < u
0 if u ≤ a.

(2.4)

LEMMA 2.3. The ideal C(�, I) in T (�) generated by {1 − 1u : u ∈ I+} is given by

C(�, I) = span {Tx(1 − 1u)T∗
y : x, y ∈ �+, u ∈ I+}. (2.5)

Proof. Since the right-hand side of (2.5) contains all the generators of C(�, I) and
is certainly contained in C(�, I), it suffices to show that the right-hand side of (2.5) is
an ideal in T (�). Since it is closed under taking adjoints and left multiplication by Tz,
it suffices to prove that it is closed under left multiplication by T∗

z . So we let z ∈ �+, let
Tx(1 − 1u)T∗

y be a typical spanning member of the right-hand side, and compute using
(2.4):

T∗
z (Tx(1 − 1u)T∗

y ) =
{

Tx−z(1 − 1u)T∗
y if z < x

T∗
z−x(1 − 1u)T∗

y if x ≤ z.

=
⎧⎨⎩

Tx−z(1 − 1u)T∗
y if z < x

(1 − 1u+x−z)T∗
y+z−x if x ≤ z < x + u

0 if x + u ≤ z.
(2.6)

In the middle case we have 0 ≤ u + x − z = u − (z − x) ≤ u, which because I is an
order ideal implies u + x − z ∈ I ; thus (2.6) always belongs to the right-hand side of
(2.5). �

Proof of the Morita equivalence in Theorem 2.1. As we mentioned above, we intend
to apply Lemma 2.2 with D = C(�, I) and E = ιI (C(I)). We take for X the closed
subspace

X := span {Tv(1 − 1u)T∗
y : y ∈ �+, u, v ∈ I+} (2.7)

of D = C(�, I) ⊂ T (�), and notice that Lemma 2.3 immediately implies that X∗X is
dense in E. Applying Lemma 2.3 with � = I shows that the image E = ιI (C(I)) of the
commutator ideal C(I) in T (I) is

E = span {Tv(1 − 1u)T∗
t : u, v, t ∈ I+},

so we certainly have E ⊂ X .
To see that X has the other three properties we require, we let u, v ∈ I+, w, x, y, z ∈

�+, and premultiply (2.6) by Tw(1 − 1v) to get

(Tw(1 − 1v)T∗
z )(Tx(1 − 1u)T∗

y ) =
⎧⎨⎩

Tw(1 − 1v)Tx−z(1 − 1u)T∗
y if z < x

Tw(1 − 1v)(1 − 1u+x−z)T∗
y+z−x if x ≤ z < x + u

0 if x + u ≤ z.
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In the first case, we can now use the adjoint of (2.4) to further simplify, obtaining

(Tw(1 − 1v)T∗
z )(Tx(1 − 1u)T∗

y ) =

⎧⎪⎪⎨⎪⎪⎩
0 if z ≤ x − v

Tw+x−z(1 − 1v−(x−z))(1 − 1u)T∗
y if x − v < z < x

Tw(1 − 1v)(1 − 1u+x−z)T∗
y+z−x if x ≤ z < x + u

0 if x + u ≤ z.
(2.8)

To see that EX ⊂ X , we just note that if w, x and z are all in I+, then w + x − z is in I+

too, and both formulas for the product in (2.8) lie in X . To see that XD ⊂ X , we note
that the formulas in (2.8) vanish unless x − v < z < x + u, in which case z − x lies in
I . To check that XX∗ is contained in E, we suppose that w and y lie in I+. Then in the
second case in (2.8) we have

0 ≤ w + x − z ≤ w + v ∈ I+ and 0 ≤ v − (x − z) ≤ v ∈ I+,

both w + x − z and v − (x − z) belong to I+, and the formula defines an element of E.
A similar argument applies to the third case in (2.8).

We have now verified that E satisfies the hypotheses of Lemma 2.2, and hence
the Morita equivalence of C(I) ∼= E and D = C(�, I) follows from that lemma. This
completes the proof of Theorem 2.1. �

REMARK 2.4. In the proof of Theorem 2.1, we wrote down a specific bimodule (2.7)
which implements the equivalence. Since this bimodule is one of the kind described in
Lemma 2.2, we can deduce from Lemma 2.2 that the Rieffel correspondence associated
to the bimodule takes an ideal J in C(�, I) to the ideal ι−1

I (J ∩ ιI (C(I))) in C(I).

3. The main theorem. A totally ordered set � is said to be well-ordered if every
subset of � has a least element, or equivalently if every element of � has a successor.
Our main theorem asserts that the topology on PrimT (�) is given by the upwards-
looking topology on

⊔
Î , as defined in the introduction, if and only if the set �(�) of

order ideals in � is well-ordered by inclusion.

THEOREM 3.1. Let � be a totally ordered abelian group, and denote by X(�) the
disjoint union

⊔{Î : I ∈ �(�)}. The map L : X(�) → PrimT (�) is a homeomorphism
for the upwards-looking topology on X(�) if and only if �(�) is well-ordered.

To prepare for the proof of Theorem 3.1, we recall from [4, §4] some general results
relating the upwards-looking topology to the topology on PrimT (�). In the last part,
when I is an order ideal in �, we view X(I) = ⊔{Ĵ : J ∈ �(�), J ⊂ I} as a subset of
X(�). Notice that the last part of the Proposition applies to every order ideal I when
�(�) is well-ordered.

PROPOSITION 3.2. Let � be a totally ordered abelian group, let F be a subset of X(�),
and let F denote the upwards-looking closure of F. Then

(a) L(F) ⊂ L(F);
(b) if F is contained in a single Î , then L(F) = L(F);
(c) if I is an order ideal which has a successor in �(�) and L(I, γ ) ∈ L(F), then

L(I, γ ) ∈ L(F ∩ X(I)).

Proof. These three assertions are proved in, respectively, Lemma 4.3,
Proposition 4.4 and Lemma 4.9 of [4]. �
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To these general properties of the upwards-looking topology, we add the following.

PROPOSITION 3.3. Suppose that I is an order ideal in a totally ordered abelian group
�, and F is a subset of X(�) which lies entirely in X(I). Suppose that χ ∈ Î and L(I, χ )
belongs to the closure L(F) of L(F) in PrimT (�). Then (I, χ ) belongs to the closure of F
in the upwards-looking topology on X(�).

This proposition is our major innovation, and its proof uses classical Toeplitz
operators, as in [12, §3], for example. So we review some basic properties of these
operators. Suppose � is a totally ordered abelian group with positive cone �+, and �̂

is the dual of �. Then L2(�̂) has a natural orthonormal basis {εx : x ∈ �} consisting
of the evaluation functions εx : γ → γ (x). The Hardy space of � is the closed span
H2(�̂) := span {εx : x ∈ �+}, and we denote by P the orthogonal projection of L2(�̂)
on H2(�̂). For f ∈ C(�̂), the Toeplitz operator with symbol f is the bounded operator
Tf on H2(�̂) defined by Tf h := P(f h), where f h is the usual pointwise product of f and
h. The map f �→ Tf of C(�̂) into B(H2(�̂)) is norm-decreasing and ∗-linear, but is not
multiplicative. Thus a Toeplitz operator Tf with invertible symbol f is not in general
invertible. Indeed, Toeplitz operators have traditionally been of interest because the
Toeplitz operators with invertible symbol are Fredholm operators in some generalised
sense, and have an interesting index theory (see [5], for example).

We want to view the Toeplitz operators Tf as elements of the Toeplitz algebra
T (�). To do this, we use the unitary isomorphism F : �2(�) → L2(�̂) which extends
the Fourier transform

(Ff )(γ ) :=
∑
x∈�

f (x)γ (x).

The unitary F maps the orthonormal basis {ex : x ∈ �} into {εx : x ∈ �}, and hence
restricts to a unitary isomorphism of �2(�+) onto H2(�̂), which we still denote by F .
One quickly checks that FTxF∗ = Tεx for x ∈ �+, and since Ad F : T �→ FTF∗ is a
∗-isomorphism and T∗

f = Tf ∗ , we also have

FT∗
xF∗ = T∗

εx
= Tε∗

x
= Tε−x . (3.1)

Thus for every trigonometric polynomial p = ∑
y∈� λyεy, the Toeplitz operator Tp =∑

y∈� λyTεy belongs to Ad F(T (�)). Since the trigonometric polynomials are dense in
C(�̂) and f �→ Tf is norm-decreasing, this implies that Ad F is an isomorphism of
T (�) onto the C∗-algebra generated by the Toeplitz operators {Tf : f ∈ C(�̂)}.

We shall use the inverse isomorphism Ad F∗ to view the Toeplitz operators Tf as
elements of T (�). Notice that, with this identification, Equation (3.1) implies that for
a trigonometric polynomial p = ∑

y∈� λyεy we have

Tp =
∑
y≥0

λyTy +
∑
y<0

λyT∗
−y. (3.2)

One standard property of Toeplitz operators which we will need says that Tf = 0
implies f = 0. In fact this follows quite easily from Theorem 2.1. To see this, note that
when I = �, the Toeplitz algebra T (�/�) is just �1, and Ind�̂

�⊥T (�/�) is naturally
identified with C(�̂). A straightforward computation using (3.2) shows that the
homomorphism φ� of Theorem 2.1 satisfies φ�(Tp)(γ ) = p(γ ) for every trigonometric
polynomial p, and the resulting equation φ�(Tp) = p extends by continuity to all
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p ∈ C(�̂). Since both f �→ Tf and φ� are norm-decreasing, this implies that ‖Tf ‖ =
‖f ‖∞, and in particular we can deduce that Tf = 0 implies f = 0, as claimed.

We now need to know how the Toeplitz operators interact with the other
ingredients in Theorem 2.1.

PROPOSITION 3.4. Suppose f ∈ C(�̂), and view Tf as an element of T (�).
(a) For γ ∈ �̂, αγ (Tf ) is the Toeplitz operator Tlt γ (f ) whose symbol is the left translate

of f by γ : ltγ (f )(ν) = f (γ −1ν).
(b) If J is an order ideal in �, then QJ(Tf ) is the Toeplitz operator T�/J

f |J⊥ whose symbol

is the function on (�/J)∧ obtained by identifying (�/J)∧ with the subset J⊥ of �̂

and restricting f to J⊥.

Proof. If p = ∑
y∈� λyεy is a trigonometric polynomial, then a computation using

(3.2) shows that αγ (Tp) = Tq, where q = ∑
y∈� λyγ (x)εy, and another computation

shows that q = ltγ (p). This gives (a) for trigonometric polynomials, and the general
statement follows because both αγ (Tf ) and Tlt γ (f ) are continuous in f .

For (b), we note that the identification of J⊥ with (�/J)∧ carries εx|J⊥ into εx+J ,
and hence carries the restriction p|J⊥ of p = ∑

y∈� λyεy into
∑

y∈� λyεy+J . Now another

application of (3.2) shows that QJ (Tp) = T�/J
p|J⊥ , and this extends to arbitrary functions

in C(�̂) by continuity. �
Proof of Proposition 3.3. We suppose that χ does not belong to the closure of F ,

and produce an element T of

k(L(F)) :=
⋂

{L(J, λ) : (J, λ) ∈ F} (3.3)

which does not belong to L(I, χ ). To define T , we consider the restriction map Res :
ν �→ ν|I of �̂ onto Î . We choose ν ∈ �̂ such that ν|I = χ . Since F is closed, so is
Res−1(F), and we can find a function f ∈ C(�̂) such that f (ν) = 1 and f vanishes on
Res−1(F). We claim that T = Tf has the required properties.

We first show that Tf /∈ L(I, χ ). Proposition 3.4 implies that

QI (α−1
ν (Tf )) = QI (Tlt−1

ν (f )) = T�/I
lt−1

ν (f )|I⊥
; (3.4)

since lt−1
ν (f )(1) = f (ν) = 1, g := lt−1

ν (f )|I⊥ is a non-zero element of C((�/I)∧), and the
Toeplitz operator T�/I

g is non-zero. Hence (3.4) implies that Tf /∈ L(I, χ ). On the other
hand, suppose (J, λ) ∈ F and γ ∈ �̂ satisfies γ |J = λ. The hypothesis on F says that
J ⊂ I , and thus Res(γ J⊥) ⊂ F . Thus f vanishes on γ J⊥,

QJ(α−1
γ (Tf )) = T�/J

lt−1
γ (f )|J⊥

= 0,

and Tf ∈ L(J, λ). So Tf belongs to the intersection k(L(F)) in (3.3), and T = Tf has
both required properties. �

Proof of Theorem 3.1. We first suppose that �(�) is well-ordered. Let F be a
subset of X(�), and suppose that L(I, χ ) belongs to the closure of L(F) in PrimT (�).
Since �(�) is well-ordered, either I = � or I has a successor in �(�). If I = �, then
Proposition 3.3 implies that (I, χ ) belongs to the closure of F . If I has a successor, then
part (c) of Proposition 3.2 implies that L(I, χ ) belongs to the closure of L(F ∩ X(I)),
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and Proposition 3.3 implies that (I, χ ) ∈ F . Thus

L(I, χ ) ∈ L(F) =⇒ (I, χ ) ∈ F =⇒ L(I, χ ) ∈ L(F),

which by part (a) of Proposition 3.2 implies that L(F) = L(F), and L is a
homeomorphism.

For the other direction, suppose that �(�) is not well-ordered, so that there is a
subset S of �(�) which does not have a least element. Let I = ⋂

J∈S J. Then I is an
order ideal in � which is the greatest lower bound for S in �(�), and hence cannot
belong to S. Let φI : T (�) → Ind�̂

I⊥T (�/I) be the homomorphism of Theorem 2.1. We
claim that ker φI = ⋂

J∈S ker φJ .
To prove the claim, we first consider the quotient maps QJ/I : T (�/I) → T (�/J),

and observe that
⊕

J∈S QJ/I (x + I) is unitary if and only if x + I ∈ J/I for all J ∈ S, and
hence if and only if x ∈ I = ⋂

J∈S J. Thus Murphy’s theorem implies that
⊕

J∈S QJ/I

is faithful on T (�/I), and we have

ker QI = ker

((⊕
J∈S

QJ/I

)
◦ QI

)
= ker

(⊕
J∈S

QJ

)
=

⋂
J∈S

ker QJ .

Now

ker φI = {a ∈ T (�) : α−1
γ (a) ∈ ker QI for all γ ∈ �̂}

=
{

a ∈ T (�) : α−1
γ (a) ∈

⋂
J∈S

ker QJ for all γ ∈ �̂

}
=

⋂
J∈S

{a ∈ T (�) : α−1
γ (a) ∈ ker QJ for all γ ∈ �̂}

=
⋂
J∈S

ker φJ ,

as claimed.
Since ker φI = ⋂

γ∈Î L(I, γ ), the claim implies that {L(I, γ ) : γ ∈ Î} is contained
in the closure of {L(J, χ ) : J ∈ S, χ ∈ Ĵ} in PrimT (�). But because I does not contain
any element of S, {(I, γ ) : γ ∈ Î} is not contained in the closure of {(J, χ ) : J ∈ S}
in the upwards-looking topology. Therefore L is not a homeomorphism for this
topology. �

4. Group extensions. In this section, we prove the following theorem.

THEOREM 4.1. Let � be a totally ordered abelian group and I an order ideal in �.
(a) Suppose that �(I) is well-ordered, and give the set

X0(I) :=
⊔

{Ĵ : J ∈ �(I), J �= I}

the upwards-looking topology. Then L : X0(I) → PrimT (�) is a homeomorphism
of X0(I) onto the open subset OC(�,I) = {P ∈ PrimT (�) : C(�, I) �⊂ P}.

(b) Suppose that �(�/I) is well-ordered, and give the set

X(�, I) :=
⊔

{Ĵ : J ∈ �(�), I ⊂ J}
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the upwards-looking topology. Then L : X(�, I) → PrimT (�) is a homeomor-
phism of X(�, I) onto the closed subset {P ∈ PrimT (�) : C(�, I) ⊂ P}.

The assertions about OC(�,I) will follow from Theorem 2.1. Much of the argument
applies to arbitrary order ideals I :

PROPOSITION 4.2. Suppose I is an order ideal in a totally ordered abelian group �.
Then

OC(�,I) := {P ∈ PrimT (�) : C(�, I) �⊂ P} is {L(J, γ ) : J � I, J ∈ �(�)}. (4.1)

For J ∈ �(�) satisfying J � I and γ ∈ Ĵ, we have

LI (J, γ ) = ι−1
I (L(J, γ ) ∩ ιI (T (I))). (4.2)

The map L(J, γ ) �→ LI (J, γ ) is a homeomorphism of OC(�,I) onto the subset OC(I) of T (I)
which is naturally homeomorphic to PrimC(I).

Proof. For the assertion (4.1), it suffices to show that

C(�, I) ⊂ L(J, γ ) if and only if I ⊂ J. (4.3)

If I ⊂ J, then C(�, I) ⊂ C(�, J), and the exactness in Theorem 2.1 implies that

C(�, I) ⊂ C(�, J) = ker φJ =
⋂
ν∈�̂

L(J, ν|J ) ⊂ L(J, γ ).

On the other hand, suppose C(�, I) ⊂ L(J, γ ), choose ν ∈ �̂ satisfying ν|J = γ , and let
x ∈ I+. Then 1 − TxT∗

x ∈ C(�, I) ⊂ L(J, γ ), so

1 − T�/J
x+J

(
T�/J

x+J

)∗ = QJ ◦ α−1
ν

(
1 − TxT∗

x

) = 0.

Thus T�/J
x+J is unitary, and x ∈ J. This implies that I = I+ − I+ ⊂ J, as required, and

we have proved (4.1).
To prove (4.2), we consider the map QI

J of T (I) onto T (I/J) characterised by
QI

J(TI
x) = TI/J

x+J . We can verify on generators that QJ ◦ ιI = ιI/J ◦ QI
J . We now choose

χ ∈ �̂ such that χ |J = γ , and write ν = χ |I . Then

LI (J, γ ) = {ξ ∈ T (I) : QI
J ◦ (αI

ν)−1(ξ ) = 0}
= {ξ ∈ T (I) : ιI/J ◦ QI

J ◦ (αI
ν)−1(ξ ) = 0}

= {ξ ∈ T (I) : QJ ◦ ιI ◦ (αI
ν)−1(ξ ) = 0}

= {ξ ∈ T (I) : QJ ◦ α−1
χ ◦ ιI (ξ ) = 0}

= {ξ ∈ T (I) : ιI (ξ ) ∈ L(J, γ )},

which is (4.2).
Since the natural homeomorphism of OC(�,I) onto PrimC(�, I) takes a primitive

ideal P to P ∩ C(�, I), composing this homeomorphism with the homeomorphism onto
PrimC(I) described in Remark 2.4 gives a homeomorphism of OC(�,I) onto PrimC(I)
which takes P to ι−1

I (P ∩ ιI (C(I))). Equation (4.2) implies that this homeomorphism
takes L(J, γ ) to LI (J, γ ) ∩ C(I). �
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Proof of Theorem 4.1. Suppose that �(I) is well-ordered. Then we know from
Theorem 3.1 that the map LI is a homeomorphism of X(I) = X0(I) � Î onto PrimT (I).
The last comment in Proposition 4.2 says that the range of this map is OC(I), and the
composition of LI with the homeomorphism of OC(I) onto OC(�,I) is L : X0(I) →
OC(�,I). This gives part (a).

For part (b), suppose �(�/I) is well-ordered and F is a subset of X(�, I), and
L(J, χ ) ∈ L(F); we want to prove that (J, χ ) ∈ F . However, the hypotheses on �(�/I)
means that either J = � or J has a successor, and the argument of the first paragraph
of the proof of Theorem 3.1 (with I replaced by J) shows that (J, χ ) ∈ F . �

REMARK 4.3. One would have liked to use this result to study PrimT (�) when �(�)
is not well-ordered, by using a composition series for � in which the subquotients have
� well-ordered. If �(�) contains an order ideal I which does not have a successor,
then part (a) of Theorem 4.1 gives useful information. However, in the quotient �/I ,
the trivial ideal I/I still does not have a successor, so �(�/I) is not well-ordered, and
part (b) does not apply. When there is just one such ideal I , just the trivial ideal in
�/I will lack a successor, and we can hope to describe the topology on PrimT (�/I) by
adjusting the upwards-looking topology as in [4, Theorem 4.13]. In general, though,
the structure of �(�) could be much more complicated than this.
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