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Abstract. Let Γ+ be the positive cone of a totally ordered abelian group Γ,
and σ a cocycle in Γ. We study the twisted crossed products by actions of Γ+ as
endomorphisms of C∗-algebras, and use this to generalized the theorem of Ji.

1. Introduction

Theory of crossed products by semigroups of endomorphisms has been successfully
used to study the Toeplitz algebras [3, 2, 9]. Having the success, it is natural to
extend the ideas into more general contexts. One direction is to the twisted version,
in which the semigroup is implemented as a projective isometric representation by
a given scalar valued cocycle. This has been done by Laca in [7] for a class of
semigroups in real numbers and for unital C∗-algebras. He introduced briefly the
definition of twisted semigroup crossed products similar to the way in which the
untwisted version is defined, by way of a universal property with respect to twisted
covariant representations, and then he stated a theorem about characterization of
faithful representations of this crossed products as in [2]. A wide range of twisted
semigroups crossed products have also been studied by Fowler and Raeburn in [5],
but (again) they work with unital algebras.

Here we set up a theory of twisted semigroup crossed product for a class of semi-
groups, which are the positive cones Γ+ in an arbitrary totally ordered abelian groups
Γ, and for nonunital C∗-algebras. This setting is nicely fit to study the Toeplitz al-
gebras T σ

Γ of noncommutative tori which was used by Ji in [6]. He worked with a
dense subgroup Γ of real numbers. Our goal is to generalize Ji’s theorem. Phillips
and Raeburn have showed a way to do this [11], they gave an alternative proof of
Ji’s theorem by employing a dilation technique. We choose to deal directly with the
twisted semigroup crossed product.

In the first section we begin with the definition of twisted semigroup crossed
products where the semigroups act by endomorphisms on nonunital C∗-algebras, it
is required that all these endomorphisms have to be extendible. The construction
and the uniqueness of such crossed products can be done by the same method as in
the untwisted version [2, 10]. We have a theorem about the short exact sequences of
twisted semigroups crossed products, which is similar to those in [2, 10]. In Section
2 we import results from [5] to have a twisted version of [3]: the universal C∗-algebra
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C∗(Γ+, σ) for isometric σ-representation is a twisted semigroup crossed product, and
that the C∗-algebras generated by two nonunitary isometric σ-representations are
canonically isomorphic. In the final section we give an application to the Toeplitz
algebra T σ

Γ . Our results extend Ji’s theorem to abelian totally ordered groups.
We can see from this work that many of the results about semigroups crossed

products and the untwisted Toeplitz algebras extend to the twisted version in very
natural way. This rises a question wether T σ

Γ has a similar structure to the untwisted
Toeplitz algebra.

2. Twisted semigroup crossed products

Let Γ be a totally ordered discrete abelian group with positive cone Γ+. A cocycle
σ on Γ is a function σ : Γ × Γ → T satisfies: σ(x, 0) = 1 = σ(0, x) for x ∈ Γ, and
σ(x, y)σ(x + y, z) = σ(x, z + y)σ(y, z) for x, y, z ∈ Γ. We recall from [1] the notion
about extendible endomorphism. An endomorphism φ on a nonunital C∗-algebra
A is extendible if it extends uniquely to a strictly continuous endomorphism φ of
the multiplier algebra M(A), this happens precisely when there is an approximate
identity (eλ) for A and a projection pφ in M(A) such that φ(eλ) converges strictly to

pφ in M(A). An extendible endomorphism satisfies that φ(eλ) converges to φ(1M(A))
strictly in M(A) for any approximate identity (eλ) ⊂ A. Every endomorphism on a
unital C∗-algebra is trivially extendible.

A semigroup dynamical system is a triple (A, Γ+, α, σ) consisting of a C∗-algebra
A which may not be unital, a cocycle σ, and an action α of Γ+ on A by extendible en-
domorphisms in the sense that each αx is extendible. An isometric σ-representation
of Γ+ is a map V of Γ+ into the set of isometries Isom(H) on a Hilbert space H
such that VxVy = σ(x, y)Vx+y. A covariant representation of (A, Γ+, α, σ) is a pair
(π, V ) in which π is a nondegenerate representation of A on a Hilbert space H, and
V is an isometric σ-representation of Γ+ such that π(αx(a)) = Vxπ(a)V ∗

x for a ∈ A
and x ∈ Γ+.

A twisted crossed product for (A, Γ+, α, σ) is a C∗-algebra B together with a
nondegenerate homomorphism iA : A → B and a twisted embedding of Γ+ as
isometries iΓ+ : Γ+ → M(B) which satisfies

(1) covariance relation: iA(αx(a)) = iΓ+(x)iA(a)iΓ+(x)∗ for a ∈ A and x ∈ Γ+.
(2) for any other covariant representation (π, V ) of (A, Γ+, α, σ), there is a non-

degenerate representation π × V of B such that (π × V ) ◦ iA = π and

(π × V ) ◦ iΓ+ = V
(3) B is generated by {iA(a)iΓ+(x) : a ∈ A, x ∈ Γ+}.

Lemma 2.1. The C∗-algebra B is span{iΓ+(x)∗iA(a)iΓ+(y) : a ∈ A, x, y ∈ Γ+}.

Proof. For short, we write iΓ+(x) as i(x). We only have to show that the set
{i(x)∗iA(a)i(y) : a ∈ A, x, y ∈ Γ+} is closed under multiplication. Fix i(x)∗iA(a)i(y)
and i(s)∗iA(b)i(t). Assume that y ≤ s, and do similar computations for y > s, as
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follow:

i(x)∗iA(a)i(y)i(s− y + y)∗iA(b)i(t)

= i(x)∗iA(a)i(y)(σ(s− y, y)i(s− y)i(y))∗iA(b)i(t)

= σ(s− y, y)i(x)∗iA(a)i(y)i(y)∗i(s− y)∗iA(b)i(t)

= σ(s− y, y)i(x)∗iA(a)iA(αy(1))i(s− y)∗iA(b)i(t)

= σ(s− y, y)i(x)∗iA(aαy(1))i(s− y)∗iA(b)i(t)

= σ(s− y, y)i(x)∗i(s− y)∗iA(αs−y(aαy(1)))iA(b)i(t)

= σ(s− y, y)σ(s− y, x)i(s− y + x)∗iA(αs−y(aαy(1))b)i(t).(2.1)

¤
Proposition 2.2. If a dynamical system (A, Γ+, α, σ) has a nonzero covariant rep-
resentation, then there exists a crossed product for the system, and it is unique up
to isomorphism.

Proof. The proof is exactly the same method as in the untwisted version [1, 10].
A covariant representation (π, V ) on H is cyclic if the C∗-algebra generated by
π(A)∪ V (Γ+) has a cyclic vector. Two cyclic representations are equivalent if there
is a unitary intertwining their images.

Every covariant representation (π, V ) of (A, Γ+, α, σ) is equivalent to a direct sum
of cyclic covariant representations. Take a set S of cyclic covariant representation
with the property that every cyclic covariant representation of the system is equiv-
alent to an element of S. Define iA(a) = ⊕(π,V )∈Sπ(a) for a ∈ A, and iΓ+(x) =
⊕(π,V )∈SVx for x ∈ Γ+. Then the C∗-algebra B generated by iA(A) ∪ iΓ+(Γ+),
together with iA and iΓ+ is a crossed product for the system.

It is unique because if (C, jA, jΓ+) is another crossed product for the system,
then the homomorphism jA × jΓ+ : B → C from part (2) of the definition is an
isomorphism such that (jA × jΓ+) ◦ iA = jA and (jA × jΓ+) ◦ iΓ+ = jΓ+ . ¤
Remark 2.3. Denote the crossed product for (A, Γ+, α, σ) by A×α,σΓ+. If (A, Γ+, α, σ)
and (B, Γ+, β, σ) are two dynamical systems, and ψ : A → B is an isomorphism such
that ψ(αz(a)) = βz(ψ(a)) for all a ∈ A and z ∈ Γ+, then A×α,σ Γ+ is isomorphic to
B ×β,σ Γ+.

Lemma 2.4. Suppose (A, Γ+, α, σ) and (A, Γ+, α, ω) are two dynamical system,
which have nontrivial covariant representations, and that [σ] = [ω] in H2(Γ,T).
Then the crossed product A×α,σ Γ+ is isomorphic to A×α,ω Γ+.

Proof. Since [σ] = [ω], there is a function ν of Γ to T such that ν(0) = 1, and that

σ(x, y) = ν(x+y)
ν(x)ν(y)

ω(x, y). Let iA and iΓ+ be the canonical embedding of A and Γ+ into

M(A×α,σ Γ+). If jΓ+ : Γ+ → M(A×α,σ Γ+), which is given by jΓ+(x) = ν(x)iΓ+(x).
Then jΓ+(x)∗jΓ+(x) = 1 for all x ∈ Γ+, and

jΓ+(x)jΓ+(y) = ν(x)ν(y)σ(x, y)jΓ+(x + y)

=
ν(x)ν(y)

ν(x + y)
σ(x, y)iΓ+(x + y)

= ω(x, y)iΓ+(x + y) for x, y ∈ Γ+.
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So (A×α,σ Γ+, iA, jΓ+) is a crossed product for (A, Γ+, α, ω). Therefore A×α,σ Γ+ is
isomorphic to A×α,ω Γ+. ¤

We recall again from [1] the definition of extendible invariant ideals in C∗-algebras.
Suppose α is an extendible endomorphism of a C∗-algebra A. Let I be an ideal of
A, and ψ : A → M(I) the canonical nondegenerate homomorphism defined by
ψ(a)i = a.i for a ∈ A and i ∈ I. It is α-invariant if α(I) ⊂ I. An α-invariant ideal
I is called extendibly α-invariant ideal if for an approximate identity (uλ) ⊂ I we
have α(uλ) converges strictly to ψ(α(1M(A))) in M(I).

Now given a dynamical system (A, Γ+, α, σ) by extendible endomorphisms, and
an ideal I of A, it was proved in [1] that there is a system (A/I, Γ+, α̃, σ) with
extendible endomorphisms α̃x(aI) = αx(a)I for all a ∈ A and x ∈ Γ+.

Theorem 2.5.
Suppose (A, Γ+, α, σ) is a system with extendible endomorphism, and I is an ex-
tendible invariant ideal of A. Let (A ×α,σ Γ+, ιA, jΓ+) be the crossed product for
(A, Γ+, α, σ). Then there exists a short exact sequence

(2.2) 0 −→ I ×α,σ Γ+ Φ−→ A×α,σ Γ+ Ψ−→ A/I ×α̃,σ Γ+ −→ 0,

where Φ is an isomorphism of I ×α,σ Γ+ onto the ideal

D := span{jΓ+(x)∗ιA(a)jΓ+(y) : x, y ∈ Γ+, i ∈ I} of A×α,σ Γ+.

Proof. The same proof of untwisted version in [1, Theorem 3.1] and [10, Theorem1.7]
works. By doing the similar computations to 2.1 on the generators, we see that D
is an ideal of A×α,σ Γ+. Let β : A×α,σ Γ+ → M(D) be the nondegenerate canonical

homomorphism. Then (D, β ◦ ιA|I , β ◦ jΓ+) is a crossed product for (I, Γ+, α, σ):
β◦ιA|I is nondegenerate because I is an extendible ideal. So there is an isomorphism
Φ := β ◦ ιA|I × β ◦ jΓ+ which gives the first half of (2.2).

Now the homomorphism Ψ : A ×α,σ Γ+ → A/I ×α̃,σ Γ+ that satisfies the second
half would be ιA/I ◦ q × kΓ+ where q is the quotient map and (ιA/I , kΓ+) are the
canonical homomorphisms of A/I and Γ+ respectively into the crossed product
A/I ×α̃,σ Γ+. The kernel of ιA/I ◦ q × kΓ+ certainly contains D. To see that it is D,
take a representation ρ of A×α,σ Γ+ with kernel D. Since ker(ρ ◦ ιA) is I, there is a
nondegenerate representation η of A/I such that the pair (η, ρ ◦ jΓ+) is a nontrivial
covariant representation of (A/I, Γ+, α̃, σ, ). Therefore A/I×α̃,σ Γ+ exists, and there
is a nondegenerate representation Θ := η×ρ◦jΓ+ of A/I×α̃,σΓ+ such that Θ◦Ψ = ρ.
Thus ker Ψ ⊂ D. ¤

3. The system (BΓ+ , Γ+, τ, σ)

Suppose Γ is a totally ordered abelian group with positive cone Γ+, and let σ be
a cocycle on Γ. Consider the C∗-subalgebra BΓ+ of `∞(Γ) spanned by the functions
{1x ∈ `∞(Γ) : x ∈ Γ+}, where

1x(y) =

{
1 if y ≥ x,
0 otherwise .
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For each x ∈ Γ+, the left translation on `∞(Γ) restricts to an action τ of Γ+ by
endomorphisms on BΓ+ such that τx(1y) = 1y+x. Since BΓ+ has a unit 10, hence
every endomorphism τx is extendible. The system (BΓ+ , Γ+, τ, σ) has a nontrivial
covariant representation, which can be constructed directly or use [8, Remark 2.5]
alternatively.

Fowler and Raeburn showed in [5] that the C∗-algebra BΓ+ ×τ,σ Γ+ is one of the
crossed product by a product system. Their results in §4 implies that BΓ+ ×τ,σ Γ+

has a property which is an analogue to the untwisted version in [3]. It is universal
which characterizes the C∗-algebra C∗(Γ+, σ): every isometric σ-representation V
of Γ+ gives a faithful representation of BΓ+ ×τ,σ Γ+ precisely when all of Vx are
nonunitary. We want to discuss and translate the theorems into our setting.

3.1. Discrete product system over Γ+. A discrete product system E over Γ+ is
a family of complex finite dimension Hilbert spaces {Ex : x ∈ Γ+} on which there is
an operation satisfying:

(i) for each x, y ∈ Γ+, there is a bilinear map (u, v) ∈ Ex × Ey 7→ uv ∈ Ex+y

such that ExEy spans a dense subset of Ex+y;
(ii) associativity: (uv)w = u(vw) for every u, v, w ∈ E; and
(iii) (uu′|vv′) = (u|v)(u′|v′) whenever u, v ∈ Ex and u′, v′ ∈ Ey.

Note that (i) and (iii) imply that the map u ⊗ v ∈ Ex ⊗ Ey 7→ uv ∈ Ex+y extends
to a unitary operator from Ex ⊗ Ey onto Ex+y.

Example 3.1. Let Ex be the Hilbert space of complex numbers C for all x ∈ Γ+,
then {Ex :∈ Γ+} is a product system with the operation defined by (u, v) ∈ Ex×Ey

maps to the usual multiplication of complex numbers uv ∈ Ex+y. It is denoted
by Γ+ × C. Now given a cocycle σ on Γ. Then a family of Hilbert spaces of
complex numbers {Ex :∈ Γ+} becomes another product system, with the twisted
multiplication: (u, v) ∈ Ex × Ey 7→ σ(x, y)uv ∈ Ex+y. This system is called the
product system Γ+ × C twisted by σ, and is denoted by (Γ+ × C)σ.

A representation of a discrete product system E on a Hilbert space H is an
operator valued map φ : E → B(H) such that

(i) φ(uv) = φ(u)φ(v) for u ∈ Ex and v ∈ Ey

(ii) φ(v)∗φ(u) = (u|v)I whenever u and v contained in the same Ex.

We use notation φx for the restriction of φ to the fiber Ex. Thus the condition (i)
means that φx(u)φy(v) = φx+y(uv) for u ∈ Ex and v ∈ Ey. It was shown in [4, p.8]
that each of φx is a linear map.

Lemma 3.2. A representation φ of the product system (Γ+×C)σ corresponds to an
isometric σ-representation x ∈ Γ+ 7→ φx(1) ∈ B(H) of Γ+.

Proof. Suppose φ is a representation of E = (Γ+ × C)σ. Then for every x ∈ Γ+,
the linear map φx(1) is an isometry because (φx(1))∗φx(1) = (1|1)I = I, and I =
φ0(1)∗φ0(1) = φ0(1)∗φ0(1)φ0(1) = φ0(1). Moreover φx(1)φy(1) = φx+y(σ(x, y)1) =
σ(x, y)φx+y(1) for x, y ∈ Γ+. Therefore the map x ∈ Γ+ 7→ φx(1) ∈ B(H) is an
isometric σ-representation of Γ+.

Conversely, suppose V : Γ+ → B(H) is an isometric σ-representation of Γ+. Then
let φ : E → B(H) be defined by φ(λ) := λVx for λ ∈ Ex. It is a representation of E:
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φx(λ)φy(η) = ληVxVy = σ(x, y)ληVx+y = φx+y(σ(x, y)λη) for λ ∈ Ex and η ∈ Ey,

and φx(λ)∗φx(η) = ληV ∗
x Vx = (η|λ)I. ¤

Remark 3.3. It was proved in [4, Proposition 2.7] that a representation φ : E →
B(H) of a product system E induces an action γφ : Γ+ → end(B(H)) of Γ+ on
B(H) by endomorphisms such that

φ(Ex) = {T ∈ B(H) : γφ
x (S)T = TS for each S ∈ B(H)},

and if {ui : i = 1, 2, · · · , n} is an orthonormal basis for Ex then the endomorphism
γφ

x is given by the sum

(3.1) γφ
x (S) =

n∑
i=1

φx(ui)Sφ(ui)
∗
x for S ∈ B(H).

3.2. Semigroup crossed products by product systems. Consider a system
(A, Γ+, α, E) consists of a unital C∗-algebra A, an action α of Γ+ on A by en-
domorphisms, and a product system E over Γ+. A covariant representation of
(A, Γ+, α, E) on a Hilbert space H is a pair (π, φ) where π is a unital representation
of A and φ is a representation of E on H such that π ◦ αx = γφ

x ◦ π for x ∈ Γ+. If
{ui : i = 1, 2, · · · , n} is an orthonormal basis for Ex then this is equivalent to

(3.2) π(αx(a)) =
n∑

i=1

φx(ui)π(a)φx(ui)
∗ for x ∈ Γ+, a ∈ A.

A crossed product for (A, Γ+, α, E) is a C∗-algebra A×α,E Γ+ together with a unital
homomorphism iA : A → A×α,E Γ+ and a representation iE : E → A×α,E Γ+ satisfy

(1) if a ∈ A, x ∈ Γ+ and {ui : i = 1, 2, · · · , n} is an orthonormal basis for Ex,
then iA(αx(a) =

∑n
i=1 iE(ui)iAiE(ui)

∗.
(2) for every covariant representation (π, φ) of (A, Γ+, α, E), there is a unital

representation π×φ of A×α,EΓ+ such that (π×φ)◦iA = π and (π×φ)◦iE = φ
(3) the C∗-algebra A×α,E Γ+ is generated by iA(A) ∪ iE(E).

Such crossed product always exists provided the system has a covariant representa-
tion, and it is unique up to isomorphism [5, Proposition 2.6].

Lemma 3.4. If E = (Γ+×C)σ, then covariant representations of (A, Γ+, α, E) are
covariant representations of the system (A, Γ+, α, σ). Therefore A ×α,E Γ+ is the
twisted semigroup crossed product A×α,σ Γ+.

Proof. Let (π, φ) be a covariant representation of (A, Γ+, α, (Γ+×C)σ). By Lemma
3.2, x ∈ Γ+ 7→ φx(1) is an isometric σ-representation of Γ+. Each Ex = C
has orthornormal basis {1}, hence the covariant condition in (3.2) is π(αx(a)) =
φx(1)π(a)φx(1)∗ for all a ∈ A and x ∈ Γ+, which is the usual covariant property of
a representation of (A, Γ+, α, σ).

Consequently if (jA, jΓ+) is the canonical covariant pair of (A, Γ+, α, σ) in the
crossed product A ×α,σ Γ+, then jE : E → B(H) defined by jx(u) = ujΓ+(x) for
u ∈ Ex is a representation of E. The pair (jA, jE) satisfies the following relation:

jA(αx(a)) = jΓ+(x)jA(a)jΓ+(x)∗ = jx(1)jA(a)jx(1)∗ for x ∈ Γ+, a ∈ A.
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So (A ×α,σ Γ+, jA, jE) is a crossed product for (A, Γ+, α, E), and hence by the
uniqueness property A ×α,(Γ+×C)σ Γ+ is isomorphic to the twisted crossed product
A×α,σ Γ+. ¤

We can see from this lemma that BΓ+×τ,(Γ+×C)σ Γ+ is the twisted crossed product
BΓ+ ×τ,σ Γ+. The Proposition 4.1 [5] proves that each representation φ of E =
(Γ+ × C)σ induces a representation πφ of BΓ+ such that πφ(1x) = γφ

x (I) and that
the pair (πφ, φ) is a covariant representation of (BΓ+ , Γ+, τ, E) = (Γ+ × C)σ). And
the representation πφ is faithful iff Πn

k=1(I − γφ
xk

(I)) 6= 0 for every finite subset
{x1, x2, · · · , xn} of Γ+ containing nonzero element.

Since we have seen that representations φ of E = (Γ+×C)σ correspond to isometric
σ-representations V of Γ+ given by Vx = φx(1), it follows that there is a pair of
covariant representation (πV , V ) of (BΓ+ , Γ+, τ, σ) such that πV (1x) = γφ

x (I) = VxV
∗
x ,

and that πV is faithful iff Πn
k=1(I−Vxk

V ∗
xk

) 6= 0 for every finite subset {x1, x2, · · · , xn}
of Γ+ containing nonzero element, which is equivalent to Vx is nonunitary for all
x. So we now translate Proposition 4.1 and Theorem 5.1 of [5] into the next two
propositions.

Proposition 3.5. (1) For any isometric σ-representation V of Γ+ on H, there
is a representation πV of BΓ+ such that the pair (πV , V ) is a covariant rep-
resentation of (BΓ+ , Γ+, τ, σ). If Vx is nonunitary for all x 6= 0, then πV is
faithful.

(2) BΓ+ ×τ,σ Γ+ is generated by {iΓ+(x) : x ∈ Γ+}; it is the closure of

span{iΓ+(x)iΓ+(y)∗ : x, y ∈ Γ+}.
(3) The homomorphism iBΓ+ : BΓ+ → BΓ+ ×τ,σ Γ+ is injective.

Proposition 3.6. If V is an isometric σ-representation of Γ+, then πV × V is an
isomorphism of BΓ+ ×τ,σ Γ+ onto the C∗-algebra C∗(Vx, σ) generated by isometric
σ-representation of Γ+ if and only if V is nonunitary.

As a result the C∗-algebras generated by two isometric σ-representations V and
W of nonunitary isometries are canonically isomorphic:

Corollary 3.7. Let Γ be a totally ordered abelian group with its positive cone Γ+, and
let σ be a cocycle on Γ. If V and W are two nonunitary isometric σ-representations
of Γ+. Then the map Vx 7→ Wx extends to an isomorphism of C∗(Vx, σ) onto
C∗(Wx, σ).

Proof. The map (πV × V )−1 ◦ (πW ×W ) is, by Proposition 3.6, an isomorphism of
the C∗-algebra C∗(Vx : x ∈ Γ+) onto C∗(Wx : x ∈ Γ+) such that Vx is mapped into
Wx for all x ∈ Γ+. ¤

4. Generalization of Ji’s theorem

We now recall the algebra studied by Ji in [6]. Suppose Γ+ is a totally ordered
abelian group with positive cone Γ+, and σ is a cocycle in Γ satisfying σ(x,−x) = 1
for all x. For x ∈ Γ+, let Tx be an isometry on `2(Γ+) defined by

(4.1) Txf(y) =

{
σ(−y, x)f(y − x) for y ≥ x
0 for 0 ≤ y < x.
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Each Tx is a nonunitary isometry, and TxTy = σ(x, y)Tx+y for all x, y ∈ Γ+. Let
T σ

Γ be the C∗-algebra generated by {Tx : x ∈ Γ+}, it is called the twisted Toeplitz
algebra.

Remark 4.1. Notice that T : x 7→ Tx is a nonunitary isometric σ-representation
of Γ+, by Corollary 3.7 the twisted Toeplitz algebra T σ

Γ is universal for isometric
σ-representation of Γ+. This generalizes Theorem 1 (1) of Ji [6] in the case Γ is a
dense subgroup of real numbers. Part (ii) of his theorem can also be recovered from
our results: T σ

Γ is isomorphic to BΓ+×τ,σ Γ+, and which is independent of the choice
of representative σ for the class σ by Lemma 2.4.

To obtain the exact sequence as in the part (iii) of Ji’s theorem, we apply our
exact sequence of twisted semigroup crossed products. Consider the ideal BΓ+,∞ :=
span{1x−1y : x < y in Γ+} of BΓ+ . It was proved in [2] that BΓ+,∞ is an extendible
τ -invariant ideal of BΓ+ (an approximate identity (10 − 1y)y∈Γ+ satisfies τx((10 −
1y)y∈Γ+) −→ 1x = τx(10) strictly in M(BΓ+,∞)). So Theorem 2.5 gives the following
exact sequence:

(4.2) 0 −→ BΓ+,∞ ×τ,σ Γ+ Φ−→ BΓ+ ×τ,σ Γ+ Ψ−→ BΓ+/BΓ+,∞ ×τ̃ ,σ Γ+ −→ 0.

We claim that BΓ+/BΓ+,∞ ×τ̃ ,σ Γ+ is the twisted group C∗-algebra C∗(Γ, σ) gen-
erated by unitary σ-representation of the group Γ. To see this, note that ε : f ∈
BΓ+ 7→ limx∈∞ f(x) ∈ C induces an isomorphism ε̃ of BΓ+/BΓ+,∞ onto C such
that ε̃(τz(f)) = ε(f) for all z ∈ Γ+ and f ∈ BΓ+ . Therefore the two systems
(BΓ+/BΓ+,∞, Γ+, τ̃ , σ) and (C, Γ+, id, σ) are equivalent. Hence BΓ+/BΓ+,∞ ×τ̃ ,σ Γ+

is isomorphic to C ×id,σ Γ+. Since covariant representations of (C, Γ+, id, σ) are in
one to one correspondence to unitary σ-representations of the group Γ, it follows
that C×id,σ Γ+ is the twisted group C∗-algebra C∗(Γ, σ). Thus BΓ+/BΓ+,∞ ×τ̃ ,σ Γ+

is indeed isomorphic to C∗(Γ, σ) as we claimed.

Lemma 4.2. The isomorphism πT ×T of BΓ+×τ,σ Γ+ onto T σ
Γ takes BΓ+,∞×τ,σ Γ+

to the twisted commutator ideal Cσ
Γ of T σ

Γ generated by the subset

{TxTy − σ(x, y)σ(y, x)TyTx : x, y ∈ Γ} where Tx := T ∗
−xfor x < 0.

Proof. Note that the ideal Φ(BΓ+,∞ ×τ,σ Γ+) in 4.2 is

D := span{iΓ+(x)∗iBΓ+ (1z − 1w)iΓ+(y) : x, y, z, w ∈ Γ+, z ≤ w}.
Since the isomorphism πT × T takes iBΓ+ (1x) to TxT

∗
x and iΓ+(x) to Tx, it follows

that the ideal πT × T (D) is

(4.3) span{T ∗
x (TzT

∗
z − TwT ∗

w)Ty : x, y, z, w ∈ Γ+, z ≤ w}.
We want to show that (4.3) is the twisted commutator ideal Cσ

Γ .
By the property of cocycle, we can see that TxTy − σ(x, y)σy, xTyTx = 0 when x

and y are both positive, and also when x and y are both negative. So the ideal Cσ
Γ

of T σ
Γ is generated by

{[TxTy]σ = TxT
∗
y − σ(x,−y)σ(−y, x)T ∗

y Tx : x, y ≥ 0}.
We prove Cσ

Γ is contained in πT × T (D). For this we show that TxT
∗
y is equivalent

to σ(−y, x)T ∗
y Tx modulo πT × T (D) for all x, y ∈ Γ+. If x ≥ y in Γ+, then TxT

∗
y =
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σ(x− y, y)Tx−yTyT
∗
y , which is equivalent to σ(x− y, y)Tx−y because TyT

∗
y − 1 lies in

πT × T (D). By doing some computations involved only the property of cocycle, we
see that

σ(x− y, y)Tx−y = σ(x− y, y)T ∗
y TyTx−y = σ(x− y, y)σ(y, x− y)T ∗

y Tx

= σ(x− y, y)σ(y,−y + x)T ∗
y Tx

= [σ(x,−y)σ(−y, y)σ(x, 0)][σ(y,−y)σ(0, x)σ(−y, x)]T ∗
y Tx

= σ(x,−y)σ(−y, x)T ∗
y Tx.

So TxT
∗
y is equivalent to σ(x,−y)σ(−y, x)T ∗

y Tx modulo πT × T (D). Hence the gen-

erator [TxTy] = TxT
∗
y − σ(x,−y)σ(−y, x)T ∗

y Tx belongs to πT × T (D) for all x ≥ y.
If x < y in Γ+ then from the previous case we know that [TyTx]σ is an element of

πT × T (D). Since our group is abelian, (x, y) 7→ σ(x, y)σ(y, x) is a homomorphism

in both variables, which implies σ(y,−x)σ(−x, y) = σ(−y, x)σ(x,−y). Therefore
[Ty, Tx]σ ∈ πT × T (D) if and only if [Tx, Ty]σ ∈ πT × T (D). Thus Cσ

Γ is contained in
πT × T (D).

Conversely, for any z ≤ w in Γ+, we write TzT
∗
z −TwT ∗

w = (TzT
∗
z −1)−(TwT ∗

w−1),

and since TzT
∗
z − 1 = TzT

∗
z − σ(−z, z)σ(z,−z)T ∗

z Tz is an element of Cσ
Γ , it follows

that πT × T (D) is contained in Cσ
Γ . ¤

So Theorem 1 (iii) of [6] is recovered from the next corollary.

Corollary 4.3. Let Γ be an abelian totally ordered group, and σ a normalized two-
cocycle of Γ into T. Suppose T σ

Γ is the twisted Toeplitz algebra, Cσ
Γ is the twisted

commutator ideal of T σ
Γ , and C∗(Γ, σ) is the twisted group C∗-algebra. Then there

is a short exact sequence of C∗-algebras:

0 −→ Cσ
Γ −→ T σ

Γ −→ C∗(Γ, σ) −→ 0.

Proof. It follows from Remark 4.1 and Lemma 4.2. ¤
Corollary 4.4. If Γ is an Archimedean group, then Cσ

Γ is simple.

Proof. Suppose I is a nonzero ideal in Cσ
Γ ' BΓ+,∞ ×τ,σ Γ+. Let π be a faithful

representation of BΓ+ ×τ,σ Γ+ such that ker π = I. An application of Proposition
3.5 shows that π = ρW × W for an isometric σ-representation W of Γ+. Since
π = ρW ×W is not faithful, by Proposition 3.6 there exists a nonzero x ∈ Γ+ such
that WxW

∗
x = 1. For y ∈ Γ+, the Archimedean hypothesis implies 0 < y < nx for

some n ∈ N Notice that I −WyW
∗
y ≤ I −WnxW

∗
nx and WnxW

∗
nx = 1, the isometry

Wy must be unitary for all y ∈ Γ+. So the representation ρW vanishes on BΓ+,∞
because ρW (1s − 1t) = WsW

∗
s − WtW

∗
t = 0 for s ≤ t ∈ Γ+. Therefore we have

ρW ×W = 0 on BΓ+,∞ ×τ,σ Γ+. Thus BΓ+,∞ ×τ,σ Γ+ ' Cσ
Γ is contained in I, hence

Cσ
Γ is simple. ¤
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