Linear Algebra

Sumanang Muhtar Gozali

Outline

(1) SYSTEM OF LINEAR EQUATION (SLE)
(2) DETERMINANT
(3) \mathbb{R}^{2} and \mathbb{R}^{3} Spaces
(4) VECTOR SPACE
(5) INNER PRODUCT SPACE
(6) LINEAR TRANSFORMATION
(7) EIGEN SPACE

The general form

The system of m linear equations with n variables x_{1}, \ldots, x_{n} has general form

$$
\begin{array}{cc}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}= & b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}= & b_{m}
\end{array}
$$

Matrix form

The system of m linear equations with n variables x_{1}, \ldots, x_{n} can be written as

$$
A x=b
$$

where

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right] \\
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
\end{gathered}
$$

Note: $A:=$ Coefficient matrix
$x:=$ Variable matrix
$b:=$ Constant matrix

Some terminologies

1. A vector $y \in \mathbb{R}^{n}$ is a solution of the system $A x=b$ if $A y=b$ holds
2. A system $A x=b$ that has solution is said to be consistent

Example

Consider the system

$$
\begin{gathered}
2 x_{1}+5 x_{2}=8 \\
3 x_{1}-2 x_{2}=-7 .
\end{gathered}
$$

This system has unique solution $x=(-1,2)$.

Example

Consider the system

$$
\begin{gathered}
x_{1}+2 x_{2}=4 \\
3 x_{1}+6 x_{2}=12 .
\end{gathered}
$$

$(0,2)$ and $(4,0)$ are the solutions of this system. More over, $(4-2 t, t), t \in \mathbb{R}$ is general solution of this system.

Example

Consider the system

$$
\begin{gathered}
2 x_{1}+x_{2}=2 \\
-4 x_{1}-2 x_{2}=0 .
\end{gathered}
$$

This system has no solution.

Fact

There are three possibilities regarding the existence of the solution, namely:

1. $A x=b$ has unique solution
2. $A x=b$ has many solutions
3. $A x=b$ has no solution

Elementary Row Operations

There are three row operations, namely:

1. Exchange two rows
2. multiplicating a row by nonzero scalar k
3. multiplicating a row by scalar k and then adding it to the other row

Theorem

Consider the system $A x=b$. The row operation does not change the solution of $A x=b$.

Homogen SLE

A homogen system has form

$$
A x=0
$$

Theorem

Every homogen system has solution

DETERMINANT

Definition

A vector space X over \mathbb{K} is a set X together with an addition

$$
u+v, u, v \in X
$$

and a scalar multiplication

$$
\alpha u, \alpha \in \mathbb{K}, u \in X
$$

where the following axioms hold:
V1. $u+v=v+u$
V2. $(u+v)+w=u+(v+w)$
V3. there exists $0 \in X$ such that $0+u=u$.
V 4 . there exists $-x \in X$ such that $x+(-x)=0$.
V5. $(\alpha+\beta) x=\alpha x+\beta x$
V6. $\alpha(u+v)=\alpha u+\alpha v$
V7. $(\alpha \beta) x=\alpha(\beta x)$
V8. $1 x=x$

Example

Let $X=\mathbb{R}^{n}$ where $n=1,2,3, \ldots$; that is, the set X consists of all the n-tuples

$$
x=\left(x_{1}, \ldots, x_{n}\right) \text { with } x_{i} \in \mathbb{R} \text { for all } i
$$

Define

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
\alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)
\end{gathered}
$$

Example

Let $X=P_{2}$; that is, the set X consists of all the polynomial with the degree at most 2 .

$$
P_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}
$$

Define

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}\right)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2} \\
\alpha\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x+\left(\alpha a_{2}\right) x^{2}
\end{gathered}
$$

Example

Let $X=M_{m \times n}(\mathbb{R})$; that is, the set X consists of all $m \times n$ matrices. Define

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ldots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]+\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & \ldots & \vdots \\
b_{m 1} & \ldots & b_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}+b_{11} & \ldots & a_{1 n}+b_{1 n} \\
\vdots & \ldots & \vdots \\
a_{m 1}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right]} \\
& \\
&
\end{aligned}
$$

Subspace

Let X be a vector space over \mathbb{R}, and $Y \subseteq X,(Y \neq \varnothing)$.
Y is a subspace of X if Y is itself a vector space over \mathbb{R} with respect to the operations of vector addition and scalar multiplication X.

Example

Let $X=\mathbb{R}^{2}$.
Consider the following subsets of X :

1. $Y_{1}=\{(x, 0) \mid x \in \mathbb{R}\}$
2. $Y_{2}=\{(x, 2 x) \mid x \in \mathbb{R}\}$

Theorem

Let X be a vector space over $\mathbb{R}, \quad Y \subseteq X, \quad(Y \neq \varnothing)$.
Y is a subspace of X if Y satisfies two following conditions:

1. $x+y \in Y, \forall x, y \in Y$
2. $\alpha x \in Y, \forall \alpha \in \mathbb{R}, x \in Y$

Definition-Linear Combination

Let X be a vector space over \mathbb{R}, and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ are set of vectors in $X . \quad x$ is called linear combination of $S=\left\{x_{1}, \ldots, x_{n}\right\}$ if there exists scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
x=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}
$$

Example

$(4,5)$ is linear combination of $(2,1)$ and $(3,3)$, because we can write

$$
-1(2,1)+2(3,3)=(4,5)
$$

Definition-Spanning Set

Let X be a vector space over \mathbb{R}, and $S \subseteq X$. X is spanned by S if every vector y in X is linear combination of S.

Example

Consider $S=\{(1,1),(1,2)\} \subset X=\mathbb{R}^{2}$. If we take $(a, b) \in X$ arbitrarily, we can find scalars α, β such that

$$
\alpha(1,1)+\beta(1,2)=(a, b) .
$$

Example

Consider the set $S=\{(1,0,0),(0,1,0),(0,0,1)\} \subset X=\mathbb{R}^{3}$. For every $(a, b, c) \in X$, we can write

$$
(a, b, c)=a(1,0,0)+b(0,1,0)+c(0,0,1)
$$

So we conclude that S spans X.

Definition-linearly independent

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ are set of vectors in $X . S$ is linearly independent if

$$
0=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}
$$

has unique solution.

Definition-Basis \& Dimension

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ are set of vectors in X. S is called basis of X if S linearly independent and Spans X. The number n of all vectors in the basis is called dimension of $X .(\operatorname{dim}(X)=n)$.

Definition

Example

Theorem

Definition

Let X be a vector space over \mathbb{R}. An inner product $\langle.,$.$\rangle is a function on X \times X$ which satisfies:

$$
\begin{aligned}
& 1\langle x, x\rangle \geq 0 ; \text { and }\langle x, x\rangle=0 \Leftrightarrow x=0 \\
& 2\langle x, y\rangle=\langle y, x\rangle \\
& 3\langle\alpha x, y\rangle=\alpha\langle x, y\rangle \\
& 4\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle
\end{aligned}
$$

The pair $(\langle\ldots,\rangle, X$.$) is called inner product space.$

Norm

Let $(\langle.,\rangle, X$.$) be an inner product space, and x \in X$. Norm (length) of x is the number

$$
\|x\|=\langle x, x\rangle^{\frac{1}{2}}
$$

Angle

Let x, y are nonzero vectors in X. The angle between x and y is θ for which

$$
\cos \theta=\frac{\langle x, y\rangle}{\|x\| \cdot\|y\|}
$$

C-S Inequality

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

Orthogonal Set

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ are set of vectors in X. S is an orthogonal set if $x_{i} \neq x_{j}$ when $i \neq j$.

Orthonormal Set

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ are set of vectors in X. S is an orthonormal set if S is orthogonal and $\left\|x_{i}\right\|=1, \forall i$

Projection

Suppose $S=\left\{x_{1}, \ldots, x_{r}\right\}$ is orthonormal basis for subspace W of X, and $x \in X$. The projection of x along W is

$$
\operatorname{Proj}_{W} x=\left\langle x, x_{1}\right\rangle x_{1}+\ldots+\left\langle x, x_{r}\right\rangle x_{r}
$$

Gram-Schmidt Process

Definition

Let V, W are vector spaces over \mathbb{R}.
The transformation

$$
f: V \rightarrow W
$$

is said to be linear if for all $x, y \in V, \alpha \in \mathbb{R}$, the following axioms hold:

1. $f(x+y)=f(x)+f(y)$
2. $f(\alpha x)=\alpha f(x)$

Definition

Let $f: V \rightarrow W$ be a linear transformation. We define Kernel and Range of f as sets

$$
\operatorname{Ker}(f)=\{\nu \in V \mid f(\nu)=0\}
$$

and

$$
R(f)=\{w \in W \mid w=f(u), u \in V\}
$$

Theorem

Let $f: V \rightarrow W$ be a linear

1. $\operatorname{Ker}(f)$ is a subspace of V.
2. $R(f)$ is a subspace of W

Representation Matrix

Let V, W be finite dimensional vector spaces with basis $B=\left\{\nu_{1}, \ldots, v_{n}\right\}$ for V, and $B^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$ for W. If $f: V \rightarrow W$ is linear, representation matrix of f is defined by

$$
[f]_{B B^{\prime}}=\left[\begin{array}{lll}
{\left[f\left(\nu_{1}\right)\right]_{B^{\prime}}} & \ldots & {\left[f\left(v_{n}\right)\right]_{B^{\prime}}}
\end{array}\right]
$$

Definition

Let M be a $n \times n$ matrix over \mathbb{R}. $\quad \lambda \in \mathbb{R}$ is called an eigenvalue of M if there exists a nonzero vector $x \in \mathbb{R}^{n}$ for which

$$
M x=\lambda x
$$

Every vector satisfying this relation is then called an eigenvector of M belonging to the eigenvalue λ.

Fact

Let λ be an eigenvalue of M, and x is the correspondence eigenvector. Consider the relation

$$
M x=\lambda x .
$$

This equation is equivalent to

$$
(\lambda I-M) x=0
$$

Then x is a solution of the system $(\lambda I-M) x=0$. Therefore, we have

$$
|(\lambda I-M)|=0 .
$$

Theorem

The following are equivalent:

1. λ is an eigenvalue of M
2. x is a solution of the system $(\lambda I-M) x=0$.
3. $|(\lambda I-M)|=0$

Definition

A $n \times n$ matrix M is said to be diagonalizable if there exists a nonsingular matrix P for which

$$
D=P^{-1} M P
$$

where D is a diagonal matrix.

Theorem

Let M be a $n \times n$ matrix over \mathbb{R}. If M has linearly independent set of n eigenvectors then M is diagonalizable. Moreover,

Theorem

Let M be a $n \times n$ matrix over \mathbb{R}. If M has n distinct eigenvalues then M is diagonalizable.

Theorem

Theorem

