Linear Algebra

Sumanang Muhtar Gozali

INDONESIA UNIVERSITY OF EDUCATION

Outline

SYSTEM OF LINEAR EQUATION (SLE)

- 2 DETERMINANT
- 3 \mathbb{R}^2 and \mathbb{R}^3 Spaces
- VECTOR SPACE
- INNER PRODUCT SPACE
- LINEAR TRANSFORMATION

EIGEN SPACE

The general form

The system of m linear equations with n variables $x_1, ..., x_n$ has general form

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

Matrix form

The system of m linear equations with n variables $x_1, ..., x_n$ can be written as

Ax = b

where

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Note: A:= Coefficient matrix x:= Variable matrix b:= Constant matrix Sumanang Muhtar Gozali (UPI)

Some terminologies

- 1. A vector $y \in \mathbb{R}^n$ is a solution of the system Ax = b if Ay = b holds
- 2. A system Ax = b that has solution is said to be consistent

Consider the system

 $2x_1 + 5x_2 = 8$ $3x_1 - 2x_2 = -7.$

This system has unique solution x = (-1, 2).

Consider the system

 $x_1 + 2x_2 = 4$ $3x_1 + 6x_2 = 12.$

(0,2) and (4,0) are the solutions of this system. More over, $(4-2t, t), t \in \mathbb{R}$ is general solution of this system.

Consider the system

 $2x_1 + x_2 = 2$
 $-4x_1 - 2x_2 = 0.$

This system has no solution.

Fact

There are three possibilities regarding the existence of the solution, namely:

- 1. Ax = b has unique solution
- 2. Ax = b has many solutions
- 3. Ax = b has no solution

Elementary Row Operations

There are three row operations, namely:

- 1. Exchange two rows
- 2. multiplicating a row by nonzero scalar k
- 3. multiplicating a row by scalar k and then adding it to the other row

Theorem

Consider the system Ax = b. The row operation does not change the solution of Ax = b.

Homogen SLE

A homogen system has form

Ax = 0

Sumanang Muhtar Gozali (UPI)

Theorem

Every homogen system has solution

DETERMINANT

Definition

A vector space X over \mathbb{K} is a set X together with an addition

 $u + v, u, v \in X$

and a scalar multiplication

 $\alpha u, \alpha \in \mathbb{K}, u \in X$

where the following axioms hold:

- V1. u + v = v + u
- V2. (u + v) + w = u + (v + w)
- V3. there exists $0 \in X$ such that 0 + u = u.
- V4. there exists $-x \in X$ such that x + (-x) = 0.
- V5. $(\alpha + \beta)x = \alpha x + \beta x$
- V6. $\alpha(u+v) = \alpha u + \alpha v$
- V7. $(\alpha\beta)x = \alpha(\beta x)$
- V8. 1x = x

Let $X = \mathbb{R}^n$ where n = 1, 2, 3, ...; that is, the set X consists of all the n-tuples $x = (x_1, ..., x_n)$ with $x_i \in \mathbb{R}$ for all i

Define

$$(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$
$$\alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_n)$$

Let $X = P_2$; that is, the set X consists of all the polynomial with the degree at most 2.

$$P_2 = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$$

Define

$$(a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$
$$\alpha(a_0 + a_1x + a_2x^2) = (\alpha a_0) + (\alpha a_1)x + (\alpha a_2)x^2$$

Let $X=M_{m\times n}(\mathbb{R});$ that is, the set X consists of all $m\times n$ matrices. Define

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \dots & \vdots \\ b_{m1} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$
$$\alpha \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \dots & \alpha a_{1n} \\ \vdots & \dots & \vdots \\ \alpha a_{m1} & \dots & \alpha a_{mn} \end{bmatrix}$$

Let X be a vector space over \mathbb{R} , and $Y \subseteq X$, $(Y \neq \emptyset)$.

Y is a subspace of *X* if *Y* is itself a vector space over \mathbb{R} with respect to the operations of vector addition and scalar multiplication *X*.

Let $X = \mathbb{R}^2$. Consider the following subsets of *X*:

- **1**. $Y_1 = \{(x, 0) \mid x \in \mathbb{R}\}$
- 2. $Y_2 = \{(x, 2x) \mid x \in \mathbb{R}\}$

Let X be a vector space over \mathbb{R} , $Y \subseteq X$, $(Y \neq \emptyset)$. Y is a subspace of X if Y satisfies two following conditions:

- 1. $x + y \in Y$, $\forall x, y \in Y$
- 2. $\alpha x \in Y$, $\forall \alpha \in \mathbb{R}$, $x \in Y$

Definition-Linear Combination

Let X be a vector space over \mathbb{R} , and $S = \{x_1, ..., x_n\}$ are set of vectors in X. x is called linear combination of $S = \{x_1, ..., x_n\}$ if there exists scalars $\alpha_1, ..., \alpha_n$ such that

 $x = \alpha_1 x_1 + \dots + \alpha_n x_n$

(4,5) is linear combination of (2,1) and (3,3), because we can write -1(2,1) + 2(3,3) = (4,5)

Definition-Spanning Set

Let X be a vector space over \mathbb{R} , and $S \subseteq X$. X is spanned by S if every vector y in X is linear combination of S. Consider $S = \{(1, 1), (1, 2)\} \subset X = \mathbb{R}^2$. If we take $(a, b) \in X$ arbitrarily, we can find scalars α, β such that

 $\alpha(1,1)+\beta(1,2)=(a,b).$

Consider the set $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \subset X = \mathbb{R}^3$. For every $(a, b, c) \in X$, we can write

(a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1).

So we conclude that S spans X.

Definition-linearly independent

Let $S = \{x_1, ..., x_n\}$ are set of vectors in X. S is linearly independent if

 $0 = \alpha_1 x_1 + \dots + \alpha_n x_n$

has unique solution.

Definition-Basis & Dimension

Let $S = \{x_1, ..., x_n\}$ are set of vectors in X. S is called basis of X if S linearly independent and Spans X. The number n of all vectors in the basis is called dimension of X. $(\dim(X)=n)$.

Definition

Theorem

Let X be a vector space over \mathbb{R} . An inner product $\langle .,. \rangle$ is a function on $X \times X$ which satisfies:

1
$$\langle x, x \rangle \ge 0$$
; and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

2 $\langle x, y \rangle = \langle y, x \rangle$

3
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

4 $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

The pair $(\langle ., . \rangle, X)$ is called inner product space.

Let $(\langle .,. \rangle, X)$ be an inner product space, and $x \in X$. Norm (length) of x is the number

$$\|x\| = \langle x, x \rangle^{\frac{1}{2}}$$

Let x, y are nonzero vectors in X. The angle between x and y is θ for which

$$\cos\theta = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

C-S Inequality

$|\langle x,y\rangle|\leq \|x\|\|y\|$

Orthogonal Set

Let $S = \{x_1, ..., x_n\}$ are set of vectors in X. S is an orthogonal set if $x_i \neq x_j$ when $i \neq j$.

Orthonormal Set

Let $S = \{x_1, ..., x_n\}$ are set of vectors in X. S is an *orthonormal set* if S is orthogonal and $||x_i|| = 1, \forall i$ Suppose $S = \{x_1, ..., x_r\}$ is orthonormal basis for subspace W of X, and $x \in X$. The projection of x along W is

 $Proj_W x = \langle x, x_1 \rangle x_1 + \ldots + \langle x, x_r \rangle x_r$

Gram-Schmidt Process

Let V, W are vector spaces over \mathbb{R} . The transformation

 $f: V \to W$

is said to be linear if for all $x, y \in V, \alpha \in \mathbb{R}$, the following axioms hold:

1.
$$f(x + y) = f(x) + f(y)$$

2.
$$f(\alpha x) = \alpha f(x)$$

Let $f: V \to W$ be a linear transformation. We define Kernel and Range of f as sets

 $Ker(f) = \{v \in V | f(v) = 0\}$

and

$$R(f) = \{ w \in W \mid w = f(u), u \in V \}$$

Theorem

- Let $f: V \to W$ be a linear
 - 1. Ker(f) is a subspace of V.
 - 2. R(f) is a subspace of W

Representation Matrix

Let V, W be finite dimensional vector spaces with basis $B = \{v_1, ..., v_n\}$ for V, and $B' = \{w_1, ..., w_n\}$ for W. If $f: V \to W$ is linear, representation matrix of f is defined by

$$[f]_{BB'} = \begin{bmatrix} [f(v_1)]_{B'} & \dots & [f(v_n)]_{B'} \end{bmatrix}$$

Let M be a $n \times n$ matrix over \mathbb{R} . $\lambda \in \mathbb{R}$ is called an eigenvalue of M if there exists a nonzero vector $x \in \mathbb{R}^n$ for which

$$Mx = \lambda x$$

Every vector satisfying this relation is then called an eigenvector of M belonging to the eigenvalue λ .

Let λ be an eigenvalue of $M,\,$ and x is the correspondence eigenvector. Consider the relation

 $Mx = \lambda x.$

This equation is equivalent to

 $(\lambda I - M)x = 0.$

Then x is a solution of the system $(\lambda I - M)x = 0$. Therefore, we have

 $|(\lambda I - M)| = 0.$

The following are equivalent:

- 1. λ is an eigenvalue of M
- 2. *x* is a solution of the system $(\lambda I M)x = 0$.
- $3. |(\lambda I M)| = 0$

A $n \times n$ matrix M is said to be diagonalizable if there exists a nonsingular matrix P for which

$$D = P^{-1}MP$$

where D is a diagonal matrix.

Let M be a $n \times n$ matrix over \mathbb{R} . If M has linearly independent set of n eigenvectors then M is diagonalizable. Moreover,

Let M be a $n \times n$ matrix over \mathbb{R} . If M has n distinct eigenvalues then M is diagonalizable.

EIGEN SPACE

Theorem

EIGEN SPACE

Theorem