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Abstract

This article covers almost all the concepts in metric spaces theory.

1 Introduction

Definition. A metric space is a set X together with a function ρ : X×X →
R (called the metric of X), which satisfies the following properties for all
x, y, z ∈ X:

M1. ρ(x, y) ≥ 0 with ρ(x, y) = 0 if and only if x = y. (Positive Definite)

M2. ρ(x, y) = ρ(y, x) (Symmetric)

M3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (Triangle Inequality)

The pair (X, ρ) is then called metric space.

Example. Consider the set of real numbers R together with metric

ρ(x, y) = |x− y|.

All conditions of metric above follow directly from the properties of absolute
value.

Example. Let X be a nonempty set. For x, y ∈ X we define

ρ(x, y) =

{
0 , x = y
1 , x 6= y.

}

This is what the so-called discrete metric.

Example. Consider the set Rn = {(x1, ..., xn)} together with

ρ(x, y) =

(
n∑

i=1

(xi − yi)
2

) 1
2

.
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The first two properties are clear. We shall prove the third one, namely the
triangle inequality.
Proof Let a = (a1, ..., an), b = (b1, ..., bn) ∈ Rn. Consider the function

ψ(u) =
n∑

i=1

(aiu + bi)
2, u ∈ R.

We get

ψ(u) =
n∑

i=1

a2
i u

2 + 2
n∑

i=1

aibiu +
n∑

i=1

b2
i .

Since ψ(u) ≥ 0, we have (2
∑n

i=1 aibi)
2− 4

∑n
i=1 a2

i

∑n
i=1 b2

i ≤ 0. This implies
the following inequality (Cauchy-Schwarz Inequality)

(
n∑

i=1

aibi)
2 ≤

n∑
i=1

a2
i

n∑
i=1

b2
i .

Accordingly, based on this inequality, we have

n∑
i=1

aibi ≤ |
n∑

i=1

aibi| ≤
√√√√

n∑
i=1

a2
i

√√√√
n∑

i=1

b2
i .

Finally, we get

n∑
i=1

a2
i + 2

n∑
i=1

aibi +
n∑

i=1

b2
i ≤

n∑
i=1

a2
i + 2

√√√√
n∑

i=1

a2
i

√√√√
n∑

i=1

b2
i +

n∑
i=1

b2
i .

This inequality is equivalent to

n∑
i=1

(ai + bi)
2 ≤




√√√√
n∑

i=1

a2
i +

√√√√
n∑

i=1

b2
i




2

,

or √√√√
n∑

i=1

(ai + bi)2 ≤
√√√√

n∑
i=1

a2
i +

√√√√
n∑

i=1

b2
i .

If we set ai = xi − zi, bi = zi − yi in this last form, we have the triangle
inequality for the Euclidean metric.
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Example. Let C[a, b] represent the collection of continuous function f :
[a, b] → R and

‖f‖ = sup
x∈[a,b]

|f(x)|.

Then ρ(f, g) = ‖f − g‖ is a metric on C[a, b]. (Prove!)

Definition. Let a ∈ X and r > 0. The open ball with center a and
radius r is the set

Br(a) = {x ∈ X : ρ(x, a) < r},
and the closed ball with center a and radius r is the set

Br(a) = {x ∈ X : ρ(x, a) ≤ r}.

Definition.

i. A set V ⊂ X is said to be open if for every x ∈ V there is an ε > 0
such that the open ball Bε(x) is contained in V .

ii. A set E ⊂ X is said to be closed if Ec = X \ E is open.

Remark.

1. Every open ball is open, and every closed ball is closed.

2. If a ∈ X, then X \ {a} is open and {a} is closed.

3. In an arbitrary metric space, the empty set ∅ and the whole space X
are both open and closed.

4. In the discrete space R, every set is both open and closed.

Definition Let (xn) be a sequence in a metric space X.

i. (xn) converges (in X) if there is a point a ∈ X (called the limit) such
that for every ε > 0 there is an N ∈ N such that

n ≥ N implies ρ(xn, a) < ε

ii. (xn) is Cauchy if for every ε > 0 there is an N ∈ N such that

n,m ≥ N implies ρ(xn, xm) < ε

iii. (xn) is bounded if there is an M > 0 and a b ∈ X such that ρ(xn, b) ≤
M for all n ∈ N.
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Moreover, we can establish the following result.
Theorem. Let X be a metric space.

i. A sequence in X can have at most one limit.

ii. If xn ∈ X converges to a and (xnk) is any subsequence of (xn) then xnk

converges to a as k →∞
iii. Every convergent sequence in X is bounded

iv. Every convergent sequence in X is Cauchy.

Remark. Let xn ∈ X. Then xn → a as n →∞ if and only if for every open
set V which contains a there is an N ∈ N such that n ≥ N implies xn ∈ V .

Theorem. Let E ⊂ X. Then E is closed if and only if the limit every
convergent sequence xk ∈ E satisfies

lim
k→∞

xk ∈ E.

Remark.

1. The discrete space contains bounded sequences which have no conver-
gent subsequences.

2. The metric space X = Q contains Cauchy sequences which do not
converge.
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