## COURSE: NUMBER THEORY (MT 305)

Objective: Students understand the divisibility properties of integers and other related topics as a basis for studying more advanced topics in Number Theory, (Modern) Algebra, or other related courses.

Course Description: In this course students will learn System of integers, which includes two global topics: Divisibility of integers and the theory of Congruences. The first topic covers: Divisibility, Prime Numbers, Greatest Common Divisors, the Euclidean Algorithm, and the Fundamental Theorem of Arithmetic. And the second topic covers: Congruences, Linear Congruences in One Variable, the Chinese Remainder Theorem, Wilson's Theorem, Fermat's Little Theorem, Euler's Theorem, and Linear Diophantine Equation. In addition, as a little preliminary before studying the two big topics above, students learn several proving methods, at glance, such as Mathematical Induction, Direct and Indirect proving methods.

Prerequisite(s): None

## Credits: 2

Compulsory/Elective/Others: Compulsory
Evaluation Methods: 35\% Exam 1, 40\% Exam 2, 10\% Presence, and 15\% Task(s).

## Lecturers:

(1) Drs. Turmudi, M.Ed., M.Sc., Ph.D.,
(2) Al Jupri, S.Pd., M.Sc.

## References:

1. Burton, D.M. (1998). Elementary Number Theory. The McGraw-Hill Companies, Inc.
2. Rosen, K.H. (1992). Elementary Number Theory and Its Application. Addison-Wesley Publishing Company.
3. Sembiring, S. (2002). Olimpiade Matematika untuk SMU. Bandung: Yrama Widya.
4. Strayer, J.K. (1994). Elementary Number Theory. Boston: PWS Publishing Company.
5. Suherman, E., Turmudi. (1992). Pengantar Teori Bilangan untuk Guru dan Calon Guru di SD, SMTP, dan SMTA. Bandung: Alpha Omega.
6. Sukirman. (2006). Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.
7. Tung, K.Y. (2008). Memahami Teori Bilangan dengan Mudah dan Menarik. Jakarta: Grasindo.

## Schedule of the course:

| Week | Toipc/ Sub-topic | Activities | References |
| :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ | Introduction, proving methods (direct, indirect, and mathematical Induction) | Lecture, discussion, and exercises. | Books 1, 4, 6 |
| $2^{\text {nd }}$ | Divisibility: definition and several its properties (theorems). | Lecture, discussion, exercises, and task. | Books 1, 4. |
| $3^{\text {rd }}$ | Division algorithm and related theorems. | Lecture, discussion, and exercises. | Books 1, 4. |
| $4^{\text {th }}$ | Prime numbers: definition, several theorems, several conjectures about prime numbers. | Lecture, discussion, exercises, and task. | Books 1, 4. |
| $5^{\text {th }}$ | Greatest Common Divisors (GCD): definition, and its theorems | Lecture, discussion, and exercises. | Books 1, 4. |
| $6^{\text {th }}$ | The Euclidean Algorithm as a tool to find GCD and related theorems. | Lecture, discussion, and exercises. | Books 1, 4. |
| $7^{\text {th }}$ | The Fundamental Theorem of Arithmetic | Lecture, discussion, exercises, and task. | Books 1, 4. |
| $8^{\text {th }}$ | Exercises before Exam 1. | Lecture and discussion | Books 1, 2, 3, 4, 5,6 , and 7 . |
| $9^{\text {th }}$ | Sub-topics from $1^{\text {st }}$ to $8^{\text {th }}$ week | Exam 1 | - |
| $10^{\text {th }}$ | Congruences: definition and its theorems | Lecture, discussion, and exercises. | Books 1, 4. |
| $11^{\text {th }}$ | Linear Congruences | Lecture, discussion, exercises, and task. | Books 1, 4. |


| $12^{\text {th }}$ | The Chinese Remainder <br> Theorem | Lecture, discussion, <br> exercises. | Books 1, 4. |
| :---: | :--- | :--- | :--- |
| $13^{\text {th }}$ | Wilson, Euler, and Fermat's <br> Little Theorems | Lecture, discussion, <br> exercises, and task | Books 1, 4. |
| $14^{\text {th }}$ | Linear Diophantine Equation | Lecture, discussion, <br> exercises, and task. | Books 1, 4. |
| $15^{\text {th }}$ | Exercises before Exam 2 and <br> review of the course | Lecture and discussion | Books 1, 2, 3, 4, <br> 5,6, and 7. |
| $16^{\text {th }}$ | Sub-topics from $10^{\text {th }}$ to $15^{\text {th }}$ <br> week | Exam 2 | - |

Notes:
Task(s): Solving mathematical problems, reading and re-writing theorem and its proofs.

