COURSE: NUMBER THEORY (MT 305)

Objective: Students understand the divisibility properties of integers and other related topics as a basis for studying more advanced topics in Number Theory, (Modern) Algebra, or other related courses.

Course Description: In this course students will learn System of integers, which includes two global topics: Divisibility of integers and the theory of Congruences. The first topic covers: Divisibility, Prime Numbers, Greatest Common Divisors, the Euclidean Algorithm, and the Fundamental Theorem of Arithmetic. And the second topic covers: Congruences, Linear Congruences in One Variable, the Chinese Remainder Theorem, Wilson's Theorem, Fermat's Little Theorem, Euler's Theorem, and Linear Diophantine Equation. In addition, as a little preliminary before studying the two big topics above, students learn several proving methods, at glance, such as Mathematical Induction, Direct and Indirect proving methods.

Prerequisite(s): None

Credits: 2

Compulsory/Elective/Others: Compulsory

Evaluation Methods: 35% Exam 1, 40% Exam 2, 10% Presence, and 15% Task(s).

Lecturers:

- (1) Drs. Turmudi, M.Ed., M.Sc., Ph.D.,
- (2) Al Jupri, S.Pd., M.Sc.

References:

- 1. Burton, D.M. (1998). *Elementary Number Theory*. The McGraw-Hill Companies, Inc.
- 2. Rosen, K.H. (1992). *Elementary Number Theory and Its Application*. Addison-Wesley Publishing Company.
- 3. Sembiring, S. (2002). *Olimpiade Matematika untuk SMU*. Bandung: Yrama Widya.
- 4. Strayer, J.K. (1994). *Elementary Number Theory*. Boston: PWS Publishing Company.
- 5. Suherman, E., Turmudi. (1992). *Pengantar Teori Bilangan untuk Guru dan Calon Guru di SD, SMTP, dan SMTA*. Bandung: Alpha Omega.
- 6. Sukirman. (2006). *Pengantar Teori Bilangan.* Yogyakarta: Hanggar Kreator.
- 7. Tung, K.Y. (2008). *Memahami Teori Bilangan dengan Mudah dan Menarik*. Jakarta: Grasindo.

Schedule of the course:

Week	Toipc/ Sub-topic	Activities	References
1 st	Introduction, proving methods (direct, indirect, and mathematical Induction)	Lecture, discussion, and exercises.	Books 1, 4, 6
2 nd	Divisibility: definition and several its properties (theorems).	Lecture, discussion, exercises, and task.	Books 1, 4.
3 rd	Division algorithm and related theorems.	Lecture, discussion, and exercises.	Books 1, 4.
4 th	Prime numbers: definition, several theorems, several conjectures about prime numbers.	Lecture, discussion, exercises, and task.	Books 1, 4.
5 th	Greatest Common Divisors (GCD): definition, and its theorems	Lecture, discussion, and exercises.	Books 1, 4.
6 th	The Euclidean Algorithm as a tool to find GCD and related theorems.	Lecture, discussion, and exercises.	Books 1, 4.
7 th	The Fundamental Theorem of Arithmetic	Lecture, discussion, exercises, and task.	Books 1, 4.
8 th	Exercises before Exam 1.	Lecture and discussion	Books 1, 2, 3, 4, 5, 6, and 7.
9 th	Sub-topics from 1 st to 8 th week	Exam 1	-
10 th	Congruences: definition and its theorems	Lecture, discussion, and exercises.	Books 1, 4.
11 th	Linear Congruences	Lecture, discussion, exercises, and task.	Books 1, 4.

12 th	The Chinese Remainder	Lecture, discussion,	Books 1, 4.
	Theorem	exercises.	
13 th	Wilson, Euler, and Fermat's	Lecture, discussion,	Books 1, 4.
	Little Theorems	exercises, and task	
14 th	Linear Diophantine Equation	Lecture, discussion,	Books 1, 4.
		exercises, and task.	
15 th	Exercises before Exam 2 and	Lecture and discussion	Books 1, 2, 3, 4,
	review of the course		5, 6, and 7.
16 th	Sub-topics from 10 th to 15 th	Exam 2	-
	week		

Notes:

Task(s): Solving mathematical problems, reading and re-writing theorem and its proofs.