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Preface 

This lecture notes is written based on our experiences in giving ‘Elementary 

Number Theory Course” at the Department of Mathematics Education, Faculty of 

Mathematics and Science Education, Indonesia University of Education, in 2009. During 

the lectures we used several Elementary Number Theory textbooks either English or 

Indonesian textbooks. However, the main source of the notes is based on the book written 

by James K. Strayer, “Elementary Number Theory” published by PWS Publishing 

Company, 1994. Therefore, the organization of the notes mostly follows this book. 

The notes consist of three chapters. Chapter 1 contains several important topics 

needed to understand next chapters, namely proof techniques (direct and indirect proofs 

techniques, and Mathematical Induction) and properties of the integers. In Chapter 2, we 

discuss Divisibility (Definition, Prime Numbers, Greatest Common Divisors, the Euclidean 

Algorithm, and the Fundamental Theorem of Arithmetic). And in Chapter 3, we discuss 

Congruences (Definition, Linear Conruences in One Variable, The Chinese Remainder 

Theorem, Wilson’s, Euler’s and Fermat’s Theorems). 

We hope this lecture notes will be useful for students in attending the Elementary 

Number Theory course in the future time. We also open for suggestions and constructive 

criticizes from the readers who want this lecture notes better. 

 

Bandung, August 2009 

 

 

 

Turmudi and Al Jupri 
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Chapter 1. Preliminary Topics 

 

1.1  Direct Proofs 

Let P and Q be statements. The construction of a direct proof of P � Q involves 

of a string of statements R1, R2, …, Rn such that 

P �R1, R2 � R2, …, Rn � Q. 

 This construction is usually not an easy task; it may take insight, intuition, and 

considerable effort. Often it also requires experience and luck. 

Example 1.1: Prove the following theorem 

 The square of an odd integer is also an odd integer. 

Proof: 

If n is an odd integer, then n = 2k + 1 for some integer k. Then the square of n is given by 

n
2
 = 4k

2
 + 4k + 1 = 2(2k

2
 + 2k) + 1. If we let m = 2k

2
 + 2k, then m is an integer (why?). 

Therefore, n
2 
is an odd integer. 

Q.E.D. 

1.2 Indirect Proofs 

a. Contrapositive proofs 

 Instead of proving P � Q, we may prove its logically equivalent contrapositive:             

not Q � not P. 

 

Example 1.2: Prove the following theorem 

 If n is an integer and n
2
 is even, then n is even. 
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Proof: 

 The contrapositive of this theorem is: If n is odd, then n
2
 is odd. But this actually 

equals to theorem in Example 1.1. Therefore, the proof is equal to the proof of theorem in 

Example 1.1. 

b. Proof by contradiction 

This method of proof employs the fact if C is a contradiction (i.e., a statement that is 

always false, such as “1 = 2”), then two statements 

(P and (not Q)) �C, P � Q 

are logically equivalent. Thus we establish P � Q by showing that the statement (P and 

(not Q)) implies a contradiction. 

Example 1.3: Prove the following theorem 

There are infinitely many prime numbers. 

Proof: 

Assume, by way of contradiction, that there are only finitely many prime numbers, say p1, 

p2, …, pn. Consider the number N = p1.p2… pn + 1. Now N has a prime divisor, say p. So p = 

pi for some i, i = 1, 2, …, n. Then p|N – p1p2…pn., which implies that p|1, a contradiction. 

Hence, there are infinitely many prime numbers. 

 

1.3 Mathematical Induction 

a. Principle of Mathematical Induction (First Version) 

For each n � N, let P(n) be a statement about n. Suppose that: 

(1) P(1) is true. 

(2) For every k � N, if P(k) is true, then P(k + 1) is true. 

Then P(n) is true for all n � N. 

b. Principle of Mathematical Induction (Second Version) 

Let n0 � N and let P(n) be a statement for each natural number n � n0. Suppose that: 

(1) The statement P(n0) is true. 

(2) For all k � n0, the truth of P(k) implies the truth of P(k+1). 

Then P(n) is true for all n � n0. 
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Example 1.4: Prove that for each n �N the following statement is true. 

1 + 3 + 5 + … + (2n – 1) = n
2
. 

Proof: 

Let P(n) be the statement: 1 + 3 + 5 + … + (2n – 1) = n
2
. 

(1) P(1) is 1 = 1
2
, it is obviously true. 

(2) Let P(k) is true, namely 1 + 3 + 5 + … + (2k – 1) = k
2
.  

For n = k + 1, then P (k + 1) is the following: 

1 + 3 + 5 + … + (2k – 1) + (2 (k + 1) – 1) = k
2
 + 2(k + 1) – 1 

                   = k
2
 + 2k + 2 – 1 

        = k
2
 + 2k + 1 

        = (k + 1)
2
 

This last statement means P (k + 1) is true. Therefore, we conclude that P(n) is true for all 

n  �N. 

Example 1.5: Prove that 7
n
 – 2

n
 is always divisible by 5, for each n �N. 

Proof: 

Let P (n) be the statement 7
n
 – 2

n
 is always divisible by 5, for each n � N. 

(1) P (1) is 7
1
 – 2

1
 = 5 is divisible by 5. So, P(1) is true. 

(2) Let P (k) is true, namely 7
k
 – 2

k
 is always divisible by 5, then for n = k + 1, P(k+1) is 

the following: 

7
k+1

 – 2
k+1 

= 7
k
.7 – 2

k
.2 

      = 7
k
.7 – 7.2

k
 + 7.2

k
 – 2

k
.2 

      = 7 (7
k
 – 2

k
) + 2

k
(7 – 2) 

Since 7
k
 – 2

k
 is always divisible by 5 and 7 – 2 = 5 is also divisible by 5, then              

7 (7
k
 – 2

k
) + 2

k
(7 – 2) is divisible by 5. This means P(k+1) is true. Thus, P(n) is true 

for each n �N. 

 

Example 1.6: Prove that n
2
 > n + 1, for each positive integer n� 2. 

Proof: 

Let P(n) be the statement n
2
 > n + 1, for each positive integer n� 2. 
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(1) P(2) is 2
2
 = 4 > 2 + 1 = 3, so P(2) is true. 

(2) Let P (k) is true, namely k
2
 > k + 1, for each positive integer k� 2. Then for            

n = k + 1,  k � 2,  P (k + 1) is the following: 

(k + 1)
2
 = k

2
 + 2k + 1  � (k + 1) + 2k + 1 = k + 2 + 2k  

   � ( k + 1) + 1. 

 This last statement means P(k + 1) is true. Therefore, P(n) is true for each positive 

 integer n� 2. 

Exercises 1.1 

1. Prove that  

2 + 4 + 6 + … + 2n = n(n+1), for each n � N. 

 

2. Prove that n
2
 � 2

n
, for n  � N with n � 4. 

3. Prove that 2
n
 > n

3
 for each n � N with n > 9. 

4. Prove that n
5
 – n is divisible by 5 for each n � N. 

5. Prove that n
3
 – 4n + 6 is divisible by 3. 

6. Prove that 11
n
 – 4

n
 is divisible by 7 for each n � N. 

7. Prove that 

1
3
 + 2

3
 + 3

3
 + … + n

3
 = (1 + 2 + 3 + … + n)

2
 for each n � N. 

1.4 Properties of Integers 

 In the elementary number theory course, we study the system of integers. This 

system consists of the set of integers Z = {…, -3, -2, -1, 0, 1, 2, 3,….} and properties of 

this set under the operations of addition and multiplication, and under the usual ordering 

relation “less than”. The important properties of the integers are summarized below: 

1. If a, b � Z, then a + b �  Z (Closure property of addition). 

2. If a, b � Z, then a.b �  Z (Closure property of multiplication). 

3. If a, b � Z, then a + b = b + a (Commutative property of addition). 

4. If a, b � Z, then a.b = b.a (Commutative property of multiplication). 

5. If a, b, c � Z, then (a + b) + c = a + (b + c) (Associative property of addition). 

6. If a, b, c � Z, then (a.b).c = a (bc). (Associative property of multiplication). 
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7. If a, b, c � Z, then a(b + c) = ab + ac (Distributive property of multiplication over 

addition). 

8. If a � Z, then a + 0 = 0 + a = a (Additive identity property). 

9. If a � Z, then a.1 =  1.a = a (Multiplicative identity property) 

10. If a � Z, then a + (-a) = (-a) + a = 0. (Additive inverse property). If a, b � Z, then a + (-

b)  is written as a - b. 

11. If a � Z, then a.0 =  0.a = 0 (Zero property of multiplication). 

12. If a, b, c � Z  and a + b = a + c, then b = c (Cancellation property of addition). 

13. If a, b, c � Z , a ≠  0, and ab = ac, then b = c (Cancellation property of multiplication) 

14. If a � Z, then exactly one of the following statements is true: (i) a < 0, (ii) a = 0, and 

(iii) a > 0 (Trichotomy law). 

15. (i) If a, b, c � Z and a < b, then a + c < b + c. 

 (ii) If a, b, c � Z, a < b and c > 0, then ac < bc 

 (iii) If a, b, c � Z, a < b and c < 0, then ac > bc. 

 (Properties of inequality) 

16. Every nonempty set of positive integers contains a least element (Well-ordering 

property). 

In this lecture notes, the properties above are taken as axioms of the system of integers. 
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Chapter 2. Divisibility and Factorization 

2. 1 Divisibility 

Definition 2.1: Let a, b � Z. Then a divides b, denoted a|b, if there exists c � Z such that   

b = ac. If a|b, then a  is said to be a divisor or factor of b. The notation a � b means that a 

does not divide b. 

Example 2.1 

(1)  4|12 since there exists c � Z such that 12 = 4.c, where c = 3. Hence, 4 is a divisor of 

12. 

(2) 4 � 11 since there does not exist c � Z such that 11 = 4c. Here c = 4/11 which is not 

element of Z. Thus, 4 is not a divisor of 11. 

(3) 5|0 since there exist c � Z such that 0 = 5c, where c = 0. 

Theorem 2.1: Let a, b, c � Z. If a|b and b|c, then a|c. 

Proof: (See hand-writing notes) 

Theorem 2.2: Let a, b, c, m, n � Z. If c|a and c|b, then c|(ma + nb). 

Proof: (see hand-writing notes) 

Definition 2.2: The expression ma + nb in the Thorem 2.2 is said to be an integral linear 

combination of a and b. 

Definition 2.3: Let x � R. The greatest integer function of x, denoted [x], is the greatest 

integer less than or equal to x. 

Lemma 2.3: Let x � R. Then x – 1 < [x]� x. 

Proof: 

Theorem 2.4: (The Division Algorithm) Let a, b � Z with b > 0. Then there exist unique q, 

r � Z such that 

a = bq + r,    0 � r < b 

(q stands for quotient and r stands for remainder). 

Proof: 

Definition 2.4: Let n � Z. Then n is said to be even if 2|n and n is said to be odd if 2 � n. 

 


