Course : Number Theory (MT 305)

Semester : 2 (Two) Credit : 2 (Two)

UNIT OF LECTURE PROGRAM

Week	Topic/subtopic	General	Specific	Matter	Approach/	Media	Assessment	Sources
		Objectives	Objectives		method			
1 st	Introduction, proving methods (direct, indirect, and mathematical Induction)	1. Students understand and Know several proving	After attending this course, students are able to: 1. Know several proving	 Direct proving method Indirect proving method (contrapositive and 	method Lecture, class discussion, group discussion, individual	LCD, Board, Textbook s	Assessment for this course includes: 1. Presence 2. Tasks	1. Burton, D.M. (1998). <i>Elementary</i> <i>Number Theory.</i> The McGraw-Hill Companies, Inc.
2 nd	Divisibility:	methods and can use them for solving number theory problems	methods 2. Use proving methods in solving problems 3. Know definition of	2. Mathematical Induction 1. Definition of Divisibility	tasks.		(individual and groups) 3. Exam 1 4. Exam 2	2. Rosen, K.H. (1992). <i>Elementary</i> <i>Number</i> Theory <i>and Its Application.</i> Addison-Wesley Publishing
	several its properties (theorems).	2. Students undestand and Know definitions, concepts, and theorems in Divisibility and	divisibility 4. Prove theorems about divisibility 5. Solve problems about divisibility	2. Properties (theorems) of divisibilty;				Company. 3. Sembiring, S. (2002). <i>Olimpiade</i> <i>Matematika untuk</i> <i>SMU</i> . Bandung: Yrama Widya. 4. Strayer, J.K. (1994).

3 rd Di ar th	ivision algorithm nd related neorems.	Congruences and use them in solving problems	6. Know division algorithem7. Read the prove of Division	 Division Algorithm (DA) Theorems which related to DA 		Elementary Number Theory. Boston: PWS Publishing
4 th Pr de th cc pr	rime numbers: efinition, several neorems, several onjectures about rime numbers.		algoritm theorems 8.Know definition of prime number 9. Read and re- write proof of prime numbers 10. Know several conjectures of prime	 Definition of prime number Theorems about prime numbers Conjectures about prime numbers 		 5. Suherman, E., Turmudi. (1992). Pengantar Teori Bilangan untuk Guru dan Calon Guru di SD, SMTP, dan SMTA. Bandung: Alpha Omega. 6. Sukirman. (2006).
5 th Gr Di de th	reatest Common ivisors (GCD): efinition, and its neorems		numbers 11. Know definition of GCD, liear combinatio n of GCD 12. Read and re-write theorems about GCD.	 Definition of Greatest Common Divisor (GCD) Theorems about GCD (linear combination, pairwise relatively prime, etc) The Euclidean 		 Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator. 7. Tung, K.Y. (2008). Memahami Teori Bilangan dengan Mudah dan Menarik. Jakarta: Grasindo.
A	lgorithm as a		Euclidean	algorithm and		

	tool to find GCD	algorithme	its application		
	and related	14. Use the			
	theorems.	Euclidean			
		algorithm			
		for finding			
		GCD			
7 th	The Fundamental	15. Know the	1. Fundamental		
	Theorem of	FTA and use	Theorem of		
	Arithmetic	it for solving	Arithmetic (FTA)		
	, and an a construction	problems	2. Several		
		16. Read and	theorems		
		re-write	related to FTA		
		proofs of	and its		
		the	application		
		theorems			
		which			
		relates to			
		FTA			
8 th	Exercises before	17. Know	Topics from 1 st to		
	Exam 1.	connection	week 7 th		
		between			
		subtopics			
		and use			
		them to			
		solve			
		problems			
9 th	Sub-topics from	-	Exam 1		
	1 st to 8 th week				
10 th	Congruences:	18. know	1. Definition of		
	definition and its	definition of	congruence		
		congruence and	2. theorems about		

	theorems	theorems	congruences			
	theorems	related to it and	congruences			
		use them to				
th		solve problems		-		
11'''	Linear	19. Use	1. Definition of			
	Congruences	theorem of	linear			
		linear	congruences			
		congruence	2. Theorem about			
		s to solve	linear			
		linear	congruences			
		congruence				
		s problems				
12 th	The Chinese	20. Solve	1. Chinese			
	Remainder	problems	remainder			
	Theorem	about	theorem			
		Chinese				
		remainder				
		theorem				
		21. Read and				
		re-write the				
		proof of				
		Chinese				
		remainder				
		theorem				
13 th	Wilson, Fuler, and	22. Use	1. Wilson's	1		
-	Fermat's Little	Wilson's.	theorem			
	Theorems	Fermat's	2. Fermat			
	mediems	and Fuler's	little's			
		theorems to	theorem			
		solve	3 Fuler's			
		nrohlems	theorem			
		problems	theorem	1	1	1

14 th	Linear Diophantine Equation	23.	Solve linear Diophantin e equation	1.Linear Diophantine equation		
15 th	Exercises before Exam 2 and review of the course	24.	Know connection between subtopics in congruenc es and use them to solve problems	1. Subtopic from 10 th week to 14 th week		
16 th	Sub-topics from 10 th to 15 th week	-		Exam 2		

Al Jupri, S.Pd., M.Sc.

Jurusan Pendidikan Matematika, FPMIPA, Universitas Pendidikan Indonesia 2009