BEBAN TIMBUNAN

BEBAN MERATA SEGITIGA

$$\sigma_z = \frac{q}{2\pi} \left(\frac{2x}{a} \alpha - \sin 2\beta \right) = qI_z$$

$$\sigma_z = \frac{q}{\pi} \left[(\alpha_1 + \alpha_2 + \alpha_3) + \frac{b}{a_1} (\alpha_1 + R\alpha_3) + \frac{x}{a_1} (\alpha_1 - R\alpha_3) \right]$$

Contoh

A 3 m high embankment is to be constructed as shown in Fig. Ex. 6. 11. If the unit weight of soil used in the embankment is 19.0 kN/m³, calculate the vertical stress due to the embankment loading at points P_1 , P_2 , and P_3 .

Figure Ex. 6.11 Vertical stresses at P₁, P₂ & P₃

Solution

$$q = \gamma H = 19 \times 3 = 57 \text{ kN/m}^2$$
, $z = 3 \text{ m}$

The embankment is divided into blocks as shown in Fig. Ex. 6.11 for making use of the graph given in Fig. 6. 15. The calculations are arranged as follows:

Solution

$$q = \gamma H = 19 \times 3 = 57 \text{ kN/m}^2$$
, $z = 3 \text{ m}$

The embankment is divided into blocks as shown in Fig. Ex. 6.11 for making use of the graph given in Fig. 6. 15. The calculations are arranged as follows:

Point	Block	<i>b</i> (m)	<i>a</i> (m)	b/z	a/z	1
EDBF	4.5	3	1.5	1	0.477	
P_2	AGH	0	1.5	0	0.5	0.15
	GKDB	7.5	3	2.5	1.0	0.493
	HKC	0	1.5	0	0.5	0.15
P_3	MLDB	10.5	3.0	3.5	1.0	0.498
	MACL	1.5	3.0	0.5	1.0	0.39

Stress Distribution in Soils due to Surface Loads

Vertical stress σ_{i}

At point
$$P_1$$
, $\sigma_2 = (0.39 + 0.477) \times 57 = 49.4 \text{ kN/m}^2$

At point
$$P_2$$
, $\sigma_z = 0.15 \times (57/2) + 0.493 \times 57 - 0.15 \times (57/2) = 28.1 \text{ kN/m}^2$

At point
$$P_3$$
, $\sigma_r = (0.498 - 0.39) 57 = 6.2 kN/m2$

continuous footings

23 Pressure isobars based on Westergaard equation for square and continuous footing

Pressure isobars based on Boussinesq equation for uniformly loaded circular footings

BEBAN TIMBUNAN TAK HINGGA

